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Abstract. Several advantages can be obtained by allowing multi-agent systems to easily access ontologies, for example, in sce-
narios where agents make their decisions based on knowledge provided by ontologies. Thus, this paper presents an infrastructure
to allow the use of web ontologies in different agent-oriented platforms. The agents use this infrastructure layer as a tool for
storing, accessing and querying domain-specific OWL ontologies. As a result, this layer allows an integration of agent plat-
forms with semantic web data and ontologies. We exemplify in practice how agents, coded in one such platform, can use the
proposed access layer to ontological reasoning engines, as well as which features can be obtained from it. We evaluated and
compared performance and memory consumption of this semantic infrastructure against usual knowledge representation in agent
programming.
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1. Introduction

Ontologies empower the execution of semantic rea-
soners [26], which provide functionalities such as con-
sistency checking, concept satisfiability, classification
and realisation. Ontologies also allow sharing a com-
mon understanding of the structure of information
among people and software agents and the reuse of do-
main knowledge [11,22]. The integration of such se-
mantic technologies into Multi-Agent Systems (MAS)
enhances the knowledge representation features and
reasoning capabilities of applications developed under
these paradigms [12]. Using ontologies in MAS results
in the possibility of creating logic rules that can be ap-
plied by semantic reasoners to infer new knowledge.
Thus, the logic is moved from the agent code to the
ontology, and the knowledge may be reused by differ-
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ent applications. Moreover, each agent is allowed to in-
clude these ontologies and specialise them with more
specific and domain-dependent knowledge.

Our approach enables the use of ontologies within
MAS, by enabling agents to reason about and query el-
ements encoded in ontologies, such as instances, con-
cepts and properties. Agents in such systems interact
with ontologies by means of an infrastructure layer
coded in a CArtAgO [24] artifact. CArtAgO offers
computational abstractions and provides services that
agents can exploit to support their activities. The in-
formation obtained from operations over this infras-
tructure may be used in agent plans to achieve goals,
such as in argumentation-based negotiation/dialogue
scenarios, whereupon more information can benefit the
agents engaged in such process [21]. Agents can use
the operations of our artifact to access and manipulate
information in ontologies, as we show in further sec-
tions, using the Jason [5] agent platform to access on-
tologies in OWL [3].
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This paper makes the following contributions: (i) de-
veloping an infrastructure layer (artifact) coded in
CArtAgO to enable ontology reasoning and querying
features in different agent-oriented platforms; (ii) de-
scribing and implementing scenarios in Jason agent
platform using the operations provided by such infras-
tructure; (iii) evaluating and comparing performance
and computational resource consumption of this new
knowledge representation approach (of accessing on-
tologies by the infrastructure) against representations
that use the belief base of agents; (iv) discussing ad-
vantages, limitations and trends of enabling agents to
access the knowledge from ontology to support their
decision making.

This paper is structured as follows. Section 2 ex-
plains a theoretical background on MAS and ontolo-
gies. Then, Section 3 proposes an architecture, based
on a CArtAgO artifact, working as an infrastructure
layer to provide ontology manipulation capabilities in
agent platforms. Section 4 uses this artifact to access
an OWL ontology in the context of Jason agents. We
explain the ontology used, reasoning examples and
how it can support the decision making of agents.
Next, in Section 5, experiments are used to com-
pare performance and memory consumption of our ap-
proach against an agent reasoning that uses only the
regular agent’s belief base. Finally, we discuss related
work in Section 6 and expose our final remarks and
outline research directions in Section 7.

2. Ontologies and Multi-Agent Systems

Ontology is defined as an explicit specification of
a conceptualisation [11], where a conceptualisation is
an abstract, simplified view of the world that we wish
to represent for some purpose. Every knowledge base,
knowledge-based system, or knowledge-level agent is
committed to some conceptualisation, explicitly or im-
plicitly [11]. Some essential properties of ontologies
are [12]: (i) ontologies describe a specific domain;
(ii) ontology users agree to use the terms consistently;
(iii) ontology concepts and relations are unambigu-
ously defined in a formal language by axioms and def-
initions; (iv) relationships between ontology concepts
determine the ontology structure; and (v) ontologies
can be understood by computers. More importantly,
ontologies empower the execution of semantic reason-
ers which provide functionalities such as consistency
checking, concept satisfiability, classification and real-
isation.

Ontologies are knowledge representation structures,
usually based on Description Logics, composed of
concepts, properties, individuals, relationships and ax-
ioms [2]. A concept (or class) is a collection of objects
that share specific restrictions, similarities or common
properties. A property expresses relationships between
concepts. An individual (instance, object, or fact) rep-
resents an element of a concept. A relationship instan-
tiates a property to relate two individuals. And an ax-
iom (or rule) imposes constraints on values of concepts
or individuals normally using logic languages (that can
be used to check ontological consistency or infer new
knowledge). Nowadays, the most prominent ontology
language is OWL (Web Ontology Language), which is
a language for processing web information and seman-
tic web standard formalism to explicitly represent the
meaning and relationships between terms [3].

We argue that those properties of ontologies have
a role to play in MAS. Agents are reactive systems
that can independently determine how to best achieve
their goals and perform their tasks while having prop-
erties such as autonomy, reactivity, pro-activeness, and
social ability [5]. Ontologies are investigated in MAS
for improving communication [1], sharing knowledge
among agents [25], enabling personal assistant agents
[23], and so on. In fact, ontologies are useful in sev-
eral other related areas, such as information gathering
[27], knowledge management [13], information secu-
rity [29], and decision support [17]. In this context it is
easy to observe how promising can be the investigation
on the use of ontologies embedded in agent systems.

Although the advantages of ontologies for agents are
clear, few MAS platforms currently integrate ontology
techniques. Limited ontological support is provided by
agent-oriented software engineering approaches since
they do not incorporate ontologies throughout the en-
tire systems development life cycle nor consider ways
in which ontologies can be used to account for interop-
erability and verification during design [28]. Consid-
ering such context, this work investigates the intercon-
nected use of ontologies in MAS.

3. Engineering ontology-based agents

There are many agent-oriented programming plat-
forms, such as [4] Jason, Jadex, Jack, AgentFactory,
2APL, GOAL, Golog, and MetateM. Those languages
differ in the agent architecture used, in their form of
communication/interaction, and also on the program-
ming paradigms that inspired or underlie each lan-
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guage. Our proposal to interact with ontologies can
be used in any agent platform that supports CArtAgO
[24]. In this work we used Jason [5] to demonstrate
the applicability of such approach. Jason is one of the
best-known languages inspired by the BDI (Beliefs-
Desires-Intentions) architecture. It is an open source
interpreter that offers several features such as speech-
act based agent communication, plans annotation, ar-
chitecture customisation, distributed execution and ex-
tensibility through internal actions.

As previously explained, ontology is defined in
computer science as an explicit specification of a con-
ceptualisation. In other words, it means an abstract
model of some world aspect that specifies properties of
important concepts and relationships. The use of on-
tology in agents is motivated by the needs of improv-
ing knowledge representation and enabling the execu-
tion of semantic reasoning. For example, in OWL, a
given class C can be declared with certain conditions
(i.e., every instance of C has to satisfy these restric-
tions, and/or every instance that satisfies these restric-
tions can be inferred as belonging to C). OWL class
restrictions [3] can be defined by elements such as car-
dinality and logic restrictions (e.g., union, intersection,
complement, the universal and the existential quanti-
fier). These restrictions allow to make inferences by
using semantic reasoners over the ontology, which are
important features to provide to agent when building
complex artificial intelligence systems.

A comparison about the integration of ontologies
within MAS is discussed with more detail in Section 6,
which focuses on related work. In short, AgentSpeak-
DL [20] is a language which appears in a paper that
does not implement it in any agent platform; JASDL
[16] is an AgentSpeak-DL implementation directly in
Jason; and CooL-AgentSpeak [19] is implemented in
a way that each agent ontology is private. Our ap-
proach differs in the sense that ontologies can be
shared among more than one agent and the ontologies
can be used in several agent platforms. These features
are obtained based on the architecture we designed
that is implemented in CArtAgO [24]. CArtAgO is a
platform to support the artifact notion in MAS. Arti-
facts are function-oriented computational abstractions
which provide services that agents can exploit to sup-
port their activities. As design and implementation de-
cision, each instance of our artifact can load and en-
capsulate exactly one OWL ontology. However, each
workspace can have any number of instances of this
artifact, where each instance makes reference to an
ontology, and the agents can observe and manipulate

any artifacts whenever they are both located in a same
workspace. Thus, MAS using our approach can handle
multiple ontologies.

The approach proposed in this research is an alter-
native to agents in which the knowledge is represented
and manipulated by means of ontologies, instead of
using a platform-specific mechanism (such as a be-
lief base). However, an agent may still use its regu-
lar knowledge representation approach simultaneous
with the new approach proposed here (or completely
replace the old approach). As this paper demonstrates,
the use of our mechanism provides advantages in terms
of expressiveness, interoperability, and performance.
Our infrastructure layer implemented in CArtAgO pro-
vides ontology features to agents by using the OWL
API [14], which allows to create, manipulate and se-
rialise OWL ontologies. An artifact makes its func-
tionalities available and exploitable by agents through
a set of operations and a set of observable prop-
erties [24]. Operations represent computational pro-
cesses executed inside artifacts, that may be triggered
by agents or other artifacts.

An architectural illustration of our approach can be
seen in Fig. 1, where we have 3 workspaces with differ-
ent configurations. As described, each workspace can
have any number of instances of CArtAgO artifacts,
and each artifact loads and encapsulates an OWL on-
tology. The agents can observe and manipulate the cor-
respondent ontologies depending on the artifacts avail-
able to them in their workspaces. Further, the agents
can still use their regular knowledge representation ap-
proach (e.g., belief base) simultaneous with the new
approach proposed here, e.g., Workspace 1 in Fig. 1, or
completely replace the old approach, e.g., Workspace
2 in Fig. 1. The usual approach, without using our pro-
posed artifact to interact with ontologies, is shown in
the Workspace 3 of Fig. 1.

Figure 1 clearly demonstrates that our approach al-
lows agents to share the same ontology, including
agents from different workspaces (e.g., the agents on
Workspace 1 and 2 are sharing the Ontology 2), as well
as it allows the agents to use information from specific
ontologies based on their role in the MAS. Figure 1 is
showing just one possible configuration of MAS, how-
ever, we emphasise that different configurations are
possible depending on the resources provided by the
multi-agent platform in use. In other words, our ap-
proach requires a platform that supports CArtAgO ar-
tifacts. Our artifact provides the following operations:

– addInstance(instance): adds the new instance in
the ontology (without defining any concept to it);
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Fig. 1. Example of agents using the proposed approach (Workspace 1 and 2) versus usual multi-agent systems (Workspace 3).

– addInstance(instance, concept): adds the new in-
stance and sets its type as the given concept;

– isInstanceOf(instance, concept): verifies if the
instance belongs to the given concept, returning a
boolean value;

– getInstances(concept): retrieves a set of instances
classified in a specific concept, returning a
Set<OWLNamedIndividual>;

– addProperty(domain, property, range): adds a
relationship among the specified instances;

– isRelated(domain, property, range): verifies if
there is a specific kind of property among the
given instances, returning a boolean value;

– getInstances(domain, property): retrieves
the instances that are targeted by the
given domain and property, returning a
Set<OWLNamedIndividual>;

– addConcept(concept): adds the new concept in
the ontology;

– isSubConceptOf(subConcept, superConcept):
verifies if the first concept is subclass of the

second one, returning a boolean value;
and

– getConcepts(instance): retrieves the set of con-
cepts (asserted and inferred) for the given in-
stance, returning a Set<OWLClass>.

4. Usage examples of the ontology artifact

We explain the use of our approach with a scenario
commonly used in the agent literature: suppose a MAS
which represents a soccer team and that each role is
represented by concepts in an ontology. For example,
a soccer team has players who can be right midfield-
ers, which specialises the concept of midfield, which
is a subclass of player, and so on. In certain moments
the coach agent of a team needs to choose a player to
replace other. To make its decision the coach agent just
needs to look for the corresponding ontology concept
and choose a player among the individuals of that con-
cept. This Section explains how agent decision mak-
ing with ontological knowledge can be coded in Jason
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using our proposed approach. Our examples are illus-
trated based on the commented soccer scenario.

4.1. Agent decision making using ontology
information

Decision making is a process where an agent looks
for the information available to it in order to decide
which course of action to follow [15]. This information
generally comes from its environment perceptions,
its initial beliefs, or from the communication with
other agents (i.e., beliefs from different sources). This
work proposes an infrastructure layer in the form of
a CArtAgO artifact to access domain specific knowl-
edge provided by ontologies in a way that agents can
use such information to make their decisions. Decision
making is one example of how our approach may be
employed, however it can be used in other domains
where information and reasoning provided by ontolo-
gies is necessary or useful. In our example, the coach
agent uses an ontology describing the team members
and the roles of each agent/player in several situations
(e.g., to retrieve information, reason and make its de-
cisions).

Since Jason is used in our examples, it is important
for the reader to be familiar with its syntax and seman-
tics. Plans in Jason have the following format:1

triggering_event: context <- body

The triggering_event represents an event re-
lated with an agent goal (or belief) that will cause the
plan to be put in practice, and it has a format such
as !goal(Parameter). The context establishes
the required preconditions to perform that plan. Lastly,
the body defines the sequence of actions and sub-
goals to fulfil that plan.

According to the soccer team scenario, the ontology
concepts model soccer roles, such as Player, Midfield
and Right Midfield (represented as concepts such as
C1, C2 and C3). The instances may represent Players,
e.g., i1 can be a player whose role is Right Midfield
(concept C3). The instance i1 can be related with i2
through r1 (e.g., r1 can be defined as “is a player less
defensive than”). Suppose an agent that needs to make
a decision about which course of action to follow con-
sidering its context that is represented in an ontology.
This decision can be guided, for example, by checking
if a particular individual belongs to a particular con-

1We refer the reader to [5] for more details about the syntax and
semantics of the language.

cept. Using operations provided in the CArtAgO ar-
tifact presented in this paper to access the ontology,
the agent can obtain the required information by ex-
ecuting the operation isInstanceOf, as shown in
the Jason plan below. This operation returns a boolean,
which is true if the individual queried, i1, belongs to
a given concept C3, or false in the other case. The re-
turn unifies with the last parameter of the operation
(R), which the agent uses to decide between executing
action_01 or action_02. Suppose a coach that
needs to choose a player in some position, which is
done by querying player agents that belongs to the de-
sired role encoded as concepts in the ontology. For ex-
ample, if in a given moment a player is injured, then
the coach agent needs to scale another player in that
position. To make this, the coach checks if a player
agent belongs to the right midfield role. In this sce-
nario, the coach has perceived that the injured player
plays in front, but it does not remember its exact role
(right midfield or left midfield). After checking this in-
formation, which is encoded as concepts in the ontol-
ogy, the coach can make the decision of scaling a new
player.

+!goal1: context
<- isInstanceOf("i1","C3",R)

if(R){ action_01 }
else{ action_02 }

Now, suppose that an agent needs to recover all in-
dividuals who participate in a particular relationship.
The agent can use this information to make a decision
about the existence of an individual in the returned set,
or to select one of these individuals for a particular
need. In this case, the operation getInstances can
be used, as presented in the following Jason plan. The
return of this operation is a set of individuals which
have that relationship (r1) with the given instance
(i2). Then, this plan tests if the set returned is empty,
which leads to the execution of action_03 if true, or
in the other case the agent will pursue a goal involving
a new decision making which uses the set of individ-
uals returned (goal3). In our example, suppose that
the coach wants to scale more defensive players to re-
place a particular player (i2) using the relation defen-
sive_substitution (r1) which returns the list of defen-
sive substitutions available for that player. If the list is
empty, the coach may decide to reposition the players
to have a more defensive team (action_03). In other
case, where there is at least one player more defensive
to substitute i2, the coach may choose one player of
this set to be scaled (!goal3(Set)).
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+!goal2: context
<- getInstance("i2","r1",Set)

if(.empty(Set)){ action_03 }
else{ !goal3(Set) }

5. Comparing ontology and agent approaches

An agent can represent its knowledge within its in-
ternal structures (e.g., its belief base), or in external
structures (e.g., an ontology). This paper shows an ar-
tifact for agents to work with knowledge represented
in ontologies, and such approach offers advantages in
terms of expressiveness and reusability. More expres-
siveness is obtained by the execution of semantic rea-
soners over the ontology; and more reusability comes
from the possibility of different platforms updating
and querying the same repository and formalism. De-
spite these improvements, when engineers have to con-
sider the development of distributed applications, such
as MAS, there is a need to consider if there will be
any loss in applications using the proposed ontological
infrastructure. Therefore, we evaluated our approach
considering two important issues to put it in practice:
performance in terms of execution time and compu-
tational resources consumption in terms of allocated
memory.

First, we wanted to measure how fast each approach
can be, in terms of their execution time to perform
similar operations. In this case, we compared two en-
vironments with exactly the same inputs and outputs.
Among these environments, the only change lies in
the computational approach, since one considers the
use of ontology to conduct operations. Our tests aim
at measuring any performance gain (or loss) in the re-
sponse time when the ontological approach is com-
pared against the traditional approach. This evaluation
is very important for the development of distributed
applications, where we are interested in applications
that respond in a timely manner. Therefore, if the in-
frastructure causes considerable performance loss in
response time, we should be aware of and careful
about its use in practice within commercial applica-
tions. Secondly, our experiments measure the compu-
tational resources consumption of using each of the
two approaches (the traditional and our new one). This
evaluation is interesting when considering the devel-
opment of distributed applications, where servers have
limited computational resources, and multi-agents ap-
plications instantiate a big number of agents. There-
fore, if a given infrastructure consumes less computa-

Table 1

Statements in ontologies and in Jason code

Statement Ontology Jason

x is instance of A x : A A(x)

x has property P targeting y (x,y) : P P(x,y)

B is subclass of A B � A A(x) :- B(x)

If B then A (B implies A) B ⇒ A A :- B

Table 2

Some examples of operations in ontologies and in Jason code

Operation Ontology artifact Jason

x is instance of A? isInstanceOf(x,A) ?A(x)

P relates x with y? isRelated(x,P,y) ?P(x,y)

Add: x is instance of A addIntance(x,A) +A(x)

Add: P holds in (x,y) addProperty(x,P,y) +P(x,y)

tional resources, then it presents an advantage over the
others. Our experiments are considering the impact on
memory consumption of different infrastructures for
such systems.

To compare the ontology reasoning with the reason-
ing executed only in the agents, we defined ways to
convert ontology statements to agent code, as depicted
in Table 1. These equivalences allow us to execute both
approaches (which will return the same result) to com-
pare their performance (i.e., the performance of rea-
soning with the ontology against simulating the same
reasoning inside agents). Thus, the proposed artifact
offers a new way to represent knowledge and new op-
erations compared when using Jason alone and the pro-
posed CArtAgO artifact to integrate agents with on-
tologies. For simplicity reason, Table 1 shows only the
main statements which were used to test our approach
of reasoning with the ontology in order to compare it
with simulating the same reasoning only inside agents.
Table 2 shows some examples of operations using our
artifact to interact with ontologies and the equivalent
operations using purely Jason code.

5.1. Experiments description

Our experiments compare the performance and the
amount of resource consumption of executing agent
plans that follow one of these two approaches for
handling knowledge (internal or external structures).
One approach uses our CArtAgO artifact to query in-
formation from ontologies; and the other approach
queries the knowledge stored in the agent belief base.
When using ontologies the number of individuals is
increased, and when using the belief base the ontolo-
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gies were converted to beliefs and rules in Jason. In
both approaches we measured and compared the exe-
cution time or the amount of resource consumption for
an agent to retrieve its information (from queries in an
ontology or from its belief base).

The ontology used has 3 concepts (e.g., C1, C2 and
C3) defined such as C3 is subclass of C2, and C2 is
subclass of C1. The number of individuals ranges from
100 to 100.000, which are asserted to the most specific
concept, in this case C3. The executed queries verify
if an individual is an instance of the most specific (C3)
and the most generic concept (C1). These queries were
performed and compared both in ontology reasoning,
and in Jason, and these queries return true, since an
instance of C3 is inferred as C1 and the queried indi-
viduals were asserted as C3. All tests were executed
in the same computer, which is a Mac Pro Server (OS
X 10.9.4) with two 6-core Intel Xeon (2.4 GHz) CPU,
32 GB of RAM (DDR3 1333 MHz) and 2 TB of disk
storage. Regarding software, we used Java SDK 1.7
(build 1.7.0_65-b17), Jason 1.3.9, OWL API 2 version
3.50 and HermiT reasoner version 1.3.8.

The Sections 5.2 and 5.3 present, respectively, spe-
cific details on our experiments considering execution
time and memory allocation. In all cases, we simply
prepared input files to represent each desired scenario
to be executed. As illustrated in our graphs, only one
variable was selected to be changed between each sim-
ulation, such as the amount of information, or the to-
tal number of agents. Then, the experiments were con-
ducted as follows. In the execution time tests, the time
was measured for different operations, and the mea-
surement of time begins immediately before executing
the desired operation and ends exactly with the return
of that operation. In the memory allocation tests, the
values were measured before putting the system in ex-
ecution and after loading everything in order to calcu-
late the amount of consumed memory. This metric was
calculated by subtracting the value obtained when the
system is up and running, from the value measured be-
fore initialising the infrastructure. More details about
our experiments are given in the following subsections.

5.2. Experiments in execution time

The results demonstrate that Jason performance can
be improved by using our new approach instead of
querying and reasoning only with the regular belief
base. The execution time was measured to retrieve the
same information, however in one case it is represented
and retrieved from the ontology using our artifact, and

in the other case it is stored and queried in the reg-
ular Jason’s belief base. When using ontologies, we
tested two alternatives: with or without the execution
of a semantic reasoner (respectively, Hermit and Struc-
tural). We queried for asserted, inferred and nonex-
istent knowledge. An example of query on asserted
knowledge that returns true is to verify if an instance
has a type that is explicitly asserted to it (in our tests
we have several instances asserted as C3). An exam-
ple of query on inferred knowledge that returns true is
to verify if an instance has a type which is not explic-
itly defined but can be inferred (e.g., C3 is an indirect
subclass of C1, therefore all instances of type C3 are
instances of C1 too). Nonexistent knowledge queries
will return false since the knowledge is not explicitly
asserted neither can be inferred in any way.

Our experiments demonstrate that the proposed ap-
proach enhances Jason’s performance, and also of-
fers advantages of reuse and expressiveness. In sce-
narios with a low number of instances (Fig. 2) we see
a minor loss in performance, however if we consider
instance rich ontologies then the proposed approach
shows improvement (Fig. 3). We would like to high-
light that these two approaches are not mutually ex-
clusive, which means that the agent programmer can
choose to use them together, or just one if desired.

The experiments consider different sizes of ontolo-
gies, for example, Fig. 2 shows our results with in-
stances ranging from 100 to 1.000 instances. The
results using ontologies with more instances (until
100.000 instances) are depicted in Fig. 3. All perfor-
mance tests (so far) demonstrate that the best perfor-
mance is obtained when using our artifact with the
Structural approach. When considering a large number
of instances, the worst performance obtained comes
from using Jason’s regular belief base. When retriev-
ing inferred information (i.e., it is not explicit as-

Fig. 2. Performance to retrieve asserted knowledge from a small
number of individuals (instance of C3 axiom).
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Fig. 3. Performance to retrieve asserted, inferred and nonexistent knowledge using ontology versus agent approaches.

serted), the performance of ontological approaches is
similar for asserted facts. However, the regular belief
base of Jason takes more time to apply the rules and
return the result. When retrieving nonexistent informa-
tion (which is not explicit asserted and cannot be in-
ferred), the performance of ontologies is similar to pre-
vious ones. However, the regular belief base of Jason
takes even more time than the previous cases.

The experiments measure the execution time of a
Jason plan which uses an operation of our CArtAgO
artifact (e.g., isInstanceOf ). The time was measured
for a hundred operations, and the sum of these val-
ues was divided by one hundred to obtain the aver-
age time of a single operation. We used this approach
to obtain more accurate results by calculating an aver-
age that avoids spikes (too low or high values). This
process was repeated ten times, and the final result
is an average of these ten executions, each one exe-
cuting a hundred of operations. The instances queried
are selected based in the calculation of an interval
(interval = NumberOfInstances

NumberOfQueries ), where it is ensured that
it will be selected members of all set, and not only
members at the start or at the end of the set (unifor-
mity). We performed ten executions of each test, and
we obtained very similar results among the tests. Thus,

we have concluded that the differences in our measure-
ments are statistically insignificant and there would be
no need to report error bars graphs to show this.

5.3. Experiments in memory consumption

In regards the consumption of computational re-
sources, we evaluated memory allocation, which is
an important factor of consideration when we are in-
terested in developing multi-agent applications with
many instances of agents. Some of our results are pre-
sented in Figs 4 and 5. For an application with just one
agent, the traditional approach consumes less memory,
as observed in the left side of Fig. 4, considering that
the infrastructure has a small weight to be loaded. This
cost is overcome once that a few agents start to share
their knowledge instead of replicating the information
privately, as shown in the right side of Fig. 4. As can
be observed in Fig. 5, the consumption of memory
in the ontological approach is very inferior compared
to the traditional approach (agents using belief bases)
for 10 or more agents. The explanation for such re-
sults is because the knowledge is not replicated for all
agents in the system, but, instead, they have access to
such information by means of our proposed infrastruc-
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Fig. 4. Memory consumption of approaches based on ontology versus regular belief base of agents in Jason (considering a fixed number of agents
and varying the number of facts in a shared ontology versus the number of beliefs per agent).

ture. Of course, a centralised knowledge base brings
the problem of a single point of failure. To deal with
this problem, which is common in distributed systems,
we could have some replicated knowledge bases.

Some details about how our experiments were im-
plemented are given next. For measuring memory
consumption, we read the value of memory alloca-
tion in two moments: before putting the system in
execution and after loading everything. The amount
of consumed memory for a given approach is ob-
tained from subtracting the metric obtained when
the system is up and running, from the metric mea-
sured before initialising the infrastructure. We im-
plemented in Java an internal action to collect the
amount of allocated memory, so we could obtain
such metric inside agent code. The first thing done
in our method to prepare the measurement in mem-
ory is invoking the Java garbage collector with the
command Runtime.getRuntime().gc(). The
collector forces the Java Virtual Machine (JVM) to
expend effort toward recycling unused objects in
order to make the memory currently occupied by
them available for quick reuse. When control re-
turns from the method call, the JVM has made its
best effort to recycle all discarded objects. After
that, the consumed memory is obtained by subtract-
ing the free memory from the total memory. The
Runtime.getRuntime().totalMemory() re-
turns the total amount of memory currently avail-
able for current and future objects in the JVM. The
Runtime.getRuntime().freeMemory() re-
turns the amount of free memory in the JVM, which
means the total amount of memory currently available
for future allocated objects. These values are obtained
in bytes, and can be converted to other scales if needed.

The Jason internal action create_agent is used
for creating the desired number of agents for our tests.

Fig. 5. Memory consumption of approaches based on ontology ver-
sus regular belief base (considering a fixed number of beliefs and
varying the number of agents in Jason).

In the infrastructures that use our artifact to interact
with ontologies, a single artifact is created through the
action makeArtifact, regardless of the number of
agents that will be created in the test. If there is an
artifact in use, each created agent performs the fol-
lowing actions from CArtAgO: joinWorkspace,
lookupArtifact, and focus. When working
without the artifact, the include instruction is used
to add the required information in the belief base.

Some differences regarding our experiments are
worth to highlight. In our performance tests, the num-
ber of agents was fixed in one, and the metric being
manipulated is the amount of information. In one ap-
proach the knowledge is encoded purely in the belief
base of agents, and in the other it is stored in an ontol-
ogy. Our memory allocation tests considered two sce-
narios. The scenario depicted in Fig. 5 fixes the amount
of knowledge, but varies the number of agents that are
storing and able to access it. The other scenario is de-
picted in Fig. 4, where the number of agents is fixed
(it is just 1 or 10), and the knowledge in the system is
being changed.
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6. Related work: Agents & ontologies

AgentSpeak-DL [20] is an agent-oriented program-
ming language that extends agents’ belief bases with
Description Logic. The advantages of integrating on-
tologies with agents are: (i) more expressive queries
in their belief bases, since results can be inferred from
ontologies and thus are not limited to explicit knowl-
edge; (ii) refined belief update given that ontologi-
cal consistency of a belief addition can be checked;
(iii) the search for a plan to deal with an event is
more flexible (not limited to unification), i.e., sub-
sumption relationships between concepts can be con-
sidered; and (iv) agents can share knowledge using on-
tology languages, such as OWL. AgentSpeak-DL ex-
tends agents’ belief base with Description Logic in or-
der to include: (i) one immutable TBox (terminolog-
ical box) that characterises the domain concepts and
properties; and (ii) one ABox (assertion box) with dy-
namic factual knowledge that changes according with
the results of environment perception, plan execution
and agent communication. Summarising, AgentSpeak-
DL enriches agents’ belief bases with the definition of
complex concepts that can go beyond factual knowl-
edge [20].

JASDL [16] implements AgentSpeak-DL in Jason
to merge agents’ belief bases with ontological reason-
ing. It provides ontology manipulation capabilities to
agents, i.e., it is a practical approach for using ontolo-
gies and semantic reasoning in Jason agents. Agent
programmers benefit from features such as plan trig-
ger generalisation based on ontologies and the use of
such knowledge in belief base querying. Jason mod-
ules were altered to implement JASDL, such as the be-
lief base (that was extended to partly resides within an
ontology and a DL reasoner), the plan library and the
agent architecture. JASDL provides reuse of ontologi-
cal knowledge, new inferences that an agent can make

based on its beliefs, knowledge consistency, enhanced
plan searching; and improved message processing with
semantically-enriched inter-agent communication.

CooL-AgentSpeak [19] extends AgentSpeak-DL
with plan exchange and ontology services. It imple-
ments a CArtAgO artifact functioning as ontology
repository which stores a possibly dynamic set of on-
tologies and offers ontology matching/alignment fea-
tures. It searches for ontologically relevant plans not
only in agent’s local plan library, but in other agents’
libraries too, according to a cooperation strategy (that
is not based solely on unification and on the subsump-
tion relation between concepts, but also on ontology
matching). In short, CooL-AgentSpeak [19] performs
cross ontological unification for agents that do not dis-
close their ontologies to each other (that cooperate
while preserving their privacy).

Our approach differs in some points. First, we
implement an infrastructure layer which works as
an interface between ontologies and MAS using a
CArtAgO artifact that can be reused in several MAS
platforms. On the other hand, AgentSpeak-DL [20] tar-
gets only AgentSpeak, and JASDL [16] addresses only
Jason. CooL-AgentSpeak [19] also uses CArtAgO as a
mean to integrate ontologies and agents, but our work
differs from this one since we assume that agents may
share their ontologies, while in CooL-AgentSpeak the
agents do not share their ontologies. A comparison
among such related work is depicted in Table 3.

There are other papers on using ontologies in MAS
to provide a common vocabulary for communication.
Although our work focuses on a more general architec-
ture, for completeness we describe some of them be-
low. One work [22] proposes the design of an intelli-
gent speech interface for Personal Assistants applied to
knowledge management. The authors argue that an ef-
fective personal agent should have two main sources of
knowledge available. The first contains shared knowl-

Table 3

Comparing related work in multi-agent systems with ontologies

Research Overview of the work Ontologies included MAS platforms used

AgentSpeak-DL [20] An approach for using ontologies during
agent reasoning to extend agents’ belief
base with DL

It is a way for agents to represent
knowledge and interact with
ontologies

AgentSpeak

JASDL [16] An implementation of AgentSpeak-DL
in the Jason platform

Jason agents can represent
knowledge and interact with
ontologies

Jason

CooL-AgentSpeak [19] An extension of AgentSpeak-DL with
plan exchange and ontology services

Each agent has access only to its
private ontologies

Jason

Our approach A CArtAgO infrastructure to integrate
multi-agent platforms with ontologies

Agents can access and manipulate
shared ontologies using our artifact

Any platform supporting CArtAgO
artifacts (e.g., Jason, JaCaMo)
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edge (ontology) in order to provide a structured rep-
resentation of domain knowledge to applications. The
second source are memories, which are responsible
for describing previous records of users’ behaviour. In
[22], ontologies play the role of providing knowledge
for agents to process the user’s statement and reason-
ing (e.g., to provide a vocabulary for the application,
including the meaning of terms). Different from [22],
we propose a general architecture for using ontologies
for both developing and executing MAS.

In [18], the authors also focus on communication
in MAS. That paper claims that, given different ter-
minology and incompleteness of information pieces
among ontologies used by different agents, under-
standing through communication is rather complex to
achieve. Therefore, the authors propose a distributed
version of description logic to model the mappings be-
tween ontologies.

In [30], the authors propose a MAS with collective
reasoning, which results from methods for cooperation
and coordination. In that work, a key point is the def-
inition of a central administrator agent that is respon-
sible for forming a knowledge pool about the domain,
providing domain knowledge for agents.

Furthermore, we have done previous research based
on which we first introduced our infrastructure for
agent platforms to interact with ontologies [8]. The
current paper is an extended version of the work pre-
sented in [8]. Also, we developed applications of such
proposed approach to using ontologies as source of in-
formation by agent systems in scenarios where agents
apply ontological information about tasks to achieve,
for example, their goals of task management, recogni-
tion, negotiation, and reallocation [21,25]. In other pa-
pers, we have considered different research directions
towards combining ontology and multi-agent tech-
nologies, in which we provided tools for engineering
MAS using an ontology as a meta-model [7]. That
work extends our ideas towards models of MAS repre-
sented as abstractions in ontologies [6,9]. We also in-
vestigated approaches for using an ontology to repre-
sent planning domains in HTN (Hierarchical Task Net-
work), which can be used to specify and convert plans
between ontological and Jason formats [10].

7. Final remarks

The integration of agent platforms with ontologies
enables agents the ability to operate in a Semantic Web
context. This work investigates how to enable current

agent-oriented development platforms to transparently
merge with such semantic technologies. As result, de-
velopers obtain new features for developing complex
software systems with a semantic infrastructure that
applies software and knowledge engineering princi-
ples. The development of applications that integrate
semantic and agent technologies is still an open chal-
lenge. To address this issue, we pointed out that ontol-
ogy languages offering semantic querying and reason-
ing should be suitably integrated into agent develop-
ment frameworks.

Our implementation to integrate ontologies within
agents uses an artifact implemented in CArtAgO [24]
that provides agents the ability to reason and manip-
ulate ontologies. Our infrastructure is applicable to
several agent-oriented platforms to engineer ontology-
based artificial intelligence and distributed applica-
tions, and we demonstrate how to use it in Jason [5]
to access ontologies in OWL [3]. We measured perfor-
mance and computational resource consumption of our
approach and compared with an alternative one which
stores all the knowledge inside the agent. Our experi-
ments demonstrated that the proposed technology en-
ables the development of new and more powerful ap-
plications. However, these approaches can be used to-
gether, in other words, an agent can represent part of
its knowledge in its own belief base and part in ontolo-
gies to be accessed using our described artifact. As fu-
ture work, we plan to carry out experiments to com-
pare the use of our approach together with and against
other agent platforms.
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