
Semantic Representations of
Agent Plans and Planning Problem Domains

Artur Freitas, Daniela Schmidt, Alison Panisson,
Felipe Meneguzzi, Renata Vieira and Rafael H. Bordini

Pontifical Catholic University of Rio Grande do Sul - PUCRS
Postgraduate Programme in Computer Science, School of Informatics (FACIN)

Porto Alegre - RS - Brazil
{artur.freitas,daniela.schmidt,alison.panisson}@acad.pucrs.br,

{felipe.meneguzzi,renata.vieira,rafael.bordini}@pucrs.br

Abstract. Integrating knowledge representation approaches with agent program-
ming and automated planning is still an open research challenge. To explore the
combination of those techniques, we present a semantic model of planning do-
mains that can be converted to both agent programming plans as well as planning
problem definitions. Our approach allows the representation of agent plans using
ontologies, enabling the integration of different formalisms since the knowledge
in the ontology can be reused by several systems and applications. Ontologies
enable the use of semantic reasoning in planning and agent systems, and such
semantic web technologies are significant current research trends. This paper
presents our planning ontology, exemplify its use with an instantiation, and shows
how to translate between ontology, agent code, and planning specifications. Al-
gorithms to convert between these formalisms are shown, and we also discuss
future directions towards the integration of semantic representation, automated
planning, and agent programming.

Keywords: ontology, knowledge representation, agent plan, automated planning

1 Introduction

Knowledge representation approaches using ontologies are being studied as promising
techniques to enable semantic reasoning, knowledge reuse, interoperability, and so on.
However, the use of ontologies integrated with agent systems and planning formalisms
is still a research path at its initial steps. To investigate this issue, we present a semantic
model to represent the knowledge about planning domains.

More specifically, we developed an ontology encoded in OWL (Web Ontology Lan-
guage) [1] to model planning domains based on the HTN (Hierarchical Task Network)
paradigm [2]. This conceptualisation was instantiated in the Protégé1 ontology editor to
model a classical problem, known as “Gold Miners”. This example demonstrates how
planning domains can be modelled in our ontology, and we also show the equivalent
agent plans and planning specifications generated from this scenario.

1 http://protege.stanford.edu/

Furthermore, we propose algorithms to convert the OWL planning ontology to dif-
ferent formalisms, such as agent programming plans in AgentSpeak [3] and planning
problem domain specifications in SHOP (Simple Hierarchical Ordered Planner) [4].
These algorithms to automatically translate from OWL to other formalisms (and vice-
versa) were implemented in Java using the OWL API [5]. Therefore, planning do-
mains instantiated in the ontology can be automatically converted to AgentSpeak [3]
or SHOP [4] code (and the other way around) using the aforementioned methods. This
work aligns the fields of knowledge representation and reasoning with the domain of
automated planning, and this opens the path to interesting research directions that are
still beginning to emerge in the relevant communities.

For instance, our approach enables to derive planning domain models and agent pro-
gramming plans from existing ontological knowledge, and also to convert again from
these formalisms to ontology representations. In other words, this work investigates
the integration of ontologies with agent programming and other planning formalisms
in order to explore semantic representations of planning domains. Thus, our goal is to
explore and demonstrate the utilisation of ontologies more expressively than previous
work in automated planning and agent-oriented development.

This paper is organised as follows. Next section provides a comprehensive back-
ground on ontologies, focusing on preparing the reader to relate ontologies with agent-
oriented programming and planning formalisms. A section of related work is presented
afterwards to map the state of the art on using ontologies in planning systems. Then, a
section explaining our conceptualisation (TBox, i.e., Terminological Box) is presented.
This conceptualisation is composed of classes and properties to represent planning do-
mains. Next, we show an instantiation (ABox, i.e., Assertion Box) of this TBox in order
to demonstrate how to use the proposed ontology to model a corresponding planning
problem. We explain how to convert from our planning ontology to AgentSpeak [3]
plans; and also from the ontology to SHOP [4] domain definitions. Algorithms coded
in Java with the OWL API [5] to make these conversions are discussed afterwards.
Then, we conclude this paper and point out other possible investigations and research
directions towards the integration of ontology, planning and agent development.

2 Ontologies and OWL

Ontology is defined as an “explicit specification of a conceptualisation” [6]. A concep-
tualisation stands for an abstract model of some aspect of the world, therefore an ontol-
ogy is a knowledge representation structure composed of concepts, properties, individ-
uals, relationships and axioms [7], as described in sequence. A concept is an abstract
group, set, class or collection of objects that share common properties. A property is
used to express relationships between concepts in a given domain. More specifically,
it describes the relationship between the first concept (i.e., the domain), and the sec-
ond, which represents that property range. An individual (also called instance, object
or fact) is the “ground-level” component of an ontology which represents a specific el-
ement of a concept or class. A relationship is an instance of a property, which relates
two individuals: one in the relationship domain, and one in its range. An axiom is used
to impose constraints on the values of classes or individuals, so axioms are generally

expressed using logic-based languages, such as first-order logic. Axioms, also called
rules, are used to verify the consistency of the ontology and to perform inferences.

The use of ontology empowers the execution of some interesting features, such as
semantic reasoners and semantic queries. Semantic reasoners, for example Pellet [8],
provide the functionalities of consistency checking, concept satisfiability, classifica-
tion and realisation. Consistency checking ensures that an ontology does not contain
contradictory facts; concept satisfiability checks if it is possible for a concept to have
instances; classification computes the subclass relations between every named class to
create the complete class hierarchy; and realisation finds the most specific classes that
an individual belongs to [8]. In other words, semantic reasoners are able to infer log-
ical consequences from a set of axioms. Reasoners are also used to apply rules such
as the ones coded in SWRL (Semantic Web Rule Language) [9]. Moreover, ontologies
can be semantically queried through SQWRL (Semantic Query-enhanced Web Rule
Language) [10], which is a simple and expressive language for implementing seman-
tic queries in OWL. OWL is a semantic web standard formalism intended to explicitly
represent the meaning of terms in vocabularies and the relationships between those
terms [1].

OWL is based on Description Logics (DL), which formed the basis of several on-
tology languages [7]. The name DL is motivated by the fact that the important no-
tions of the domain are specified by concept descriptions, i.e., expressions that are built
from atomic concepts (unary predicates) and atomic roles (binary predicates) using
the concept and role constructors provided by the particular DL. DL systems provide
various inference capabilities to deduce implicit knowledge from the explicitly repre-
sented knowledge [7]. For example, the subsumption algorithm determines subconcept-
superconcept relationships; the instance algorithm infers instance relationships; and the
consistency algorithm identifies whether a knowledge base (consisting of a set of asser-
tions and a set of terminological axioms) is non-contradictory.

Given this technological development, it is natural to think that there would be many
advantages in using it more expressively in agent-oriented software engineering. The
work reported in [11] pointed out to the following advantages of such integration: (i)
more expressive queries in the belief base, since its results can be inferred from the
ontology and thus are not limited to explicit knowledge; (ii) refined belief update given
that ontological consistency of a belief addition can be checked; (iii) the search for a
plan to deal with an event is more flexible because it is not limited to unification, i.e., it
is also possible to consider subsumption relationships between concepts; and (iv) agents
can share knowledge using ontology languages, such as the case of OWL.

This section presented a background on ontologies, where we can observe that sev-
eral advantages can emerge by using them more expressively in agent-oriented software
engineering and planning. Next section investigates the state of the art regarding related
studies integrating ontologies with artificial intelligence planning approaches.

3 Related Work

The work in [12] explains how an OWL reasoner can be integrated with an artificial
intelligence planner. Investigations on the efficiency of such integrated system and how

OWL reasoning can be optimized for this context were also presented. In their approach,
the reasoner is used to store the world state, answer the planner’s queries regarding the
evaluation of preconditions, and update the state when the planner simulates the effects
of operators. Also, they described the challenges of modelling service preconditions,
effects and the world state in OWL, examining the impact of this in the planning pro-
cess. Specifically, the SHOP2 HTN planning system was integrated with the OWL DL
reasoner Pellet to explore the use of semantic reasoning over the ontology [12].

A generic task ontology to formalise the space of planning problems was proposed
in [13]. According with its authors, this task ontology formalises the nature of the plan-
ning task independently of any planning paradigm, specific domains, or applications
and provides a fine-grained, precise and comprehensive characterization of the space
of planning problems. The OCML (Operational Conceptual Modelling Language) was
used to formalise the task ontology proposed in [13], since it was argued that this
language provides both support for producing sophisticated specifications, as well as
mechanisms for operationalising definitions to provide a concrete reusable resource to
support knowledge acquisition and system development.

Another related work [14] defines a series of translations from ontologies to plan-
ning formalisms: one from OWL-S process models to SHOP2 domains; and another
from OWL-S composition tasks to SHOP2 planning problems. They describe an imple-
mented system which performs these translations using an extended SHOP2 implemen-
tation to plan with over the translated domain, and then executing the resulting plans. In
summary, the work of [14] explored how to use the SHOP2 HTN planning system to do
automatic composition in the context of Web Services described in OWL-S ontologies.

Reference [15] proposes a planning and knowledge engineering framework based
on OWL ontologies that facilitates the development of domains and uses Description
Logic (DL) reasoning during the planning steps. In their model, the state of the world is
represented as a set of OWL facts (i.e., assertions on OWL individuals), represented in
an RDF (Resource Description Framework) graph; actions are described as RDF graph
transformations; and planning goals are described as RDF graph patterns. Their planner
integrates DL reasoning by using a two-phase planning approach that performs DL
reasoning in an off-line manner, and builds plans on-line, without doing any reasoning.
Their planner uses a subset of DL known as DLP (Description Logic Programs) that
has polynomial time complexity and can be evaluated using a set of logic rules.

Several authors are proposing semantic representation of planning domains in on-
tologies. Also, approaches to translate among planning formalisms and ontologies are
usually explored. These approaches can involve the use of semantic reasoners before or
during the planning steps. However, to the best of our knowledge, our work is the first
to address the integration of ontologies in OWL [1] with both the HTN [2] formalism
and with agent programming plans.

Next section explains the proposed planning ontology coded in OWL [1], which is
explored to generate both agent plans in AgentSpeak [3] and SHOP [4] specifications
of planning problem domains.

4 The Planning Ontology Conceptualisation

In classical planning, the main aim of the planning task is to attain a goal-state, which
is usually specified in terms of a number of desired properties of the world. To model
this domain, we developed an ontology, encoded in OWL [1] and built with Protégé, to
represent HTN planning domains. Protégé is an open source ontology editor which also
enables the visualisation of ontologies in different ways, the execution of semantic rea-
soners, and several other interesting features. The concepts and properties formalized
in our proposed HTN planning ontology can be visualised in Figure 1. The conceptual-
isation was created based on the definitions of [2], [16] and [17], and a description of
these concepts can be found next:

Fig. 1. Concepts and properties of the planning ontology

– DomainDefinition: A domain definition is a description of a planning domain, con-
sisting of a set of methods, operators, and axioms.

– Operator: Each operator indicates how a primitive task can be performed. It is com-
posed of: name, parameters, preconditions, a delete list and an add list giving the
operator’s negative and positive effects.

– Method: Each method indicates how to decompose a compound task into a partially
ordered set of subtasks, each of which can be compound or primitive. The simplest
version of a method has three parts: the task for which it is to be used, the precondi-
tions, and the subtasks that need to be done in order to accomplish it.

– Axiom: Axioms can infer preconditions that are not explicitly asserted in the current
state. The preconditions of methods or operators may use conjunctions, disjunctions,
negations, universals and existential quantifiers, implications, numerical computa-
tions and external function calls.

– Predicate: A predicate has a name and it contains any number of parameters. Pred-
icates are used to represent the preconditions and postconditions of actions, as well
as the state of the world (i.e., the state of affairs).

– Parameter: A parameter is a variable symbol whose name begins with a question
mark (e.g., as ?x or ?agent), and it is used by operators, methods and predicates.

– MethodFlow: The flows of a method specify how it can be decomposed based on
the current state of the world (which is represented in predicates). Thus, each method
flow contains an ordered list of preconditions and an ordered list of methods or oper-
ators invocations. Each method must contain at least one flow.

– ProblemDefinition: Planning problems are composed of logical atoms (i.e, initial
state) and task lists (high-level actions to perform), which means, a set of goals.

– Goal: Goals in HTN are method invocations with specific parameters that the planner
will have to decompose in a sequence of operators (i.e., a plan).

– InitialState: An instance of initial state models the problem by means of predicates
that represent the state of the world at the beginning of the simulation.

The concepts that are used as domain or range of each property in the proposed HTN
planning ontology are presented in Table 1. This table illustrates formal definitions
that were developed to formalize the knowledge represented in our ontology. Some
object properties have only one concept as domain and/or range (e.g., the property has-
operator has DomainDefinition as domain and Operator as range). However, logical
expressions were also used to include more than one concept in this slot, such as the
case of the has-postcondition property that has the MethodFlow concept as domain and
the expression “Operator or Method” as range.

Table 1. Domain and range of each property in the planning ontology

Domain Property Range
DomainDefinition has-operator Operator
DomainDefinition has-method Method
DomainDefinition has-axiom Axiom
InitialState has-predicate Predicate
Method has-flow MethodFlow
Operator adds-predicate Predicate
Operator deletes-predicate Predicate
Predicate uses-parameter Parameter
ProblemDefinition has-domain DomainDefinition
ProblemDefinition has-goal Goal
Method, Operator or Predicate has-parameter Parameter
MethodFlow or Operator has-precondition Predicate
MethodFlow has-postcondition Operator or Method

Besides the classes and properties, OWL annotations were used to represent ad-
ditional information in the relationships of this ontology instantiations. When repre-
senting relationships with predicates or parameters, the order in which they have to

appear must be known, which is annotated when a property targeting one of them is
instantiated. Annotations are also the best choice to model logical expressions among
predicates and which parameters are required when a method or operator instance re-
lates with a predicate. Three new annotations were designed with this purpose: position,
logicalExpression and parameters. The position annotation stores the location where
that element must be written in the corresponding files, and it can be used in the fol-
lowing properties: has-flow, has-precondition, adds-predicate, deletes-predicate, uses-
parameter and has-parameter. The logicalExpression annotation was created to be used
only in relationships involving the has-precondition property. Finally, the parameters
annotation must be used only within the properties has-precondition, adds-predicate
and deletes-predicate. This annotation was employed in order to relate instances of
predicates used to define specific operators and methods with instances of parameters.

Figure 2 illustrates the concepts and properties (with their domain and range) in a
more intuitive way using the OntoGraf2 plug-in, which can be found in Protégé. In this
representation, the ontology is viewed as a graph, where the nodes are concepts and
the edges represent object properties relating the concepts. This section presented how
we modelled the concepts and properties of our HTN planning ontology using OWL.
The next sections show an instantiation (ABox) of this previously explained ontology
conceptualisation (TBox) to model a specific scenario. Then, we show the equivalent
agent programming plans in AgentSpeak [3] and planning domain specifications in
SHOP [4] derived from our ontology representation.

Fig. 2. Visual representation of our planning ontology in Protégé (OntoGraf plug-in)

5 Instantiating the Planning Ontology

To investigate the feasibility of defining a planning domain as an instantiation of our
OWL ontology, we also used the Protégé ontology editor to create a simple definition of

2 http://protegewiki.stanford.edu/wiki/OntoGraf

a planning problem domain scenario. We modelled a well-known multi-agent scenario
known as gold miners3, where agents playing the role of miners have to move in an en-
vironment, and search specific positions. Our scenario includes only one instance of the
Operator concept (named move) and one instance of Method (named pursuitPosition).
The operator move has two preconditions, one negative effect and one positive effect,
all represented as predicates. The method pursuitPosition has two different flows, each
one with its corresponding preconditions and effects. A snapshot of the instantiation us-
ing this scenario (gold miners) can be seen in Figure 3. It is important to highlight that
Figure 3 illustrates the ontology instantiation in Protégé that corresponds exactly to the
previously explained specification. Next we demonstrate that it is possible to convert
from our ontology formalism both to planning specifications and to agent plans. In fact,
this paper explains methods for converting among these different formalisms.

Fig. 3. Instantiating our planning ontology according to the goldminers specific planning domain

An advantage of using ontology editors is the capability of enhancing the graphic
visualisation of planning problem domains instances as well as agent plans and their
relationships, as illustrates Figure 4. This visualisation was obtained using a Protégé
plug-in known as OntoGraf, however it is possible to explore the ontologies using dif-
ferent editors. In this example, the user can visualize domain features such as how the
instances are related, and the visualization can be customized to show only the desired
characteristics of the corresponding instantiation. Moreover, an ontology representation
makes possible to explore features such as rules coded in SWRL [9] and inferences em-
powered by semantic reasoners [8]. The next sections show how to convert from our

3 http://multiagentcontest.org/2006

planning ontology in OWL both to agent programming plans in AgentSpeak [3] and to
artificial intelligence planners specifications in SHOP [4].

The list of instances and their relationships is presented below, where “a : C” denotes
that the instance ‘a’ is a type of ‘C’, and “(a,b) : R” indicates that the instance ‘a’ is
related to instance ‘b’ through the property ‘R’. This list is a full description of the
example used in this paper, which corresponds to Figures 3 and 4. This example was
instantiated in the ontology to be converted both to a planning specification in SHOP
and agent plans in AgentSpeak.

Fig. 4. Visualising the instances of our planning ontology in Protégé (OntoGraf plug-in)

domain-definition : DomainDefinition
operator-move : Operator
method-pursuitPosition : Method
pursuitPosition-flow1 : MethodFlow
pursuitPosition-flow2 : MethodFlow
parameter-agent : Parameter
parameter-to : Parameter
parameter-from : Parameter
parameter-x : Parameter
predicate-at : Predicate
predicate-next : Predicate
(domain-definition, operator-move) : has-operator
(domain-definition, method-pursuitPosition) : has-method
(operator-move, parameter-agent) : has-parameter
(operator-move, parameter-from) : has-parameter
(operator-move, parameter-to) : has-parameter
(operator-move, predicate-at) : has-precondition
(operator-move, predicate-next) : has-precondition
(operator-move, predicate-at) : deletes-predicate

(operator-move, predicate-at) : adds-predicate
(method-pursuitPosition, pursuitPosition-flow1) : has-flow
(method-pursuitPosition, pursuitPosition-flow2) : has-flow
(method-pursuitPosition, parameter-agent) : has-parameter
(method-pursuitPosition, parameter-from) : has-parameter
(method-pursuitPosition, parameter-to) : has-parameter
(pursuitPosition-flow1, predicate-at) : has-precondition
(pursuitPosition-flow1, predicate-next) : has-precondition
(pursuitPosition-flow1, operator-move) : has-postcondition
(pursuitPosition-flow2, predicate-at) : has-precondition
(pursuitPosition-flow2, predicate-next) : has-precondition
(pursuitPosition-flow2, operator-move) : has-postcondition
(pursuitPosition-flow2, method-pursuitPosition) : has-postcondition

Besides the relationships listed above to describe the example instantiated in our
ontology, there is a data property has-name. Also, our instantiation represent positions
and parameters as annotation in these relationships.

5.1 Converting from our OWL Planning Ontology to AgentSpeak Plans

Most techniques for Multi-Agent System development are heavily inspired by the BDI
architecture (Beliefs, Desires and Intentions). For example, the AgentSpeak [18] lan-
guage was introduced in 1996 as a formalisation of BDI agents to enable agent pro-
grams to be written using a notation similar to (guarded) Horn clauses. Agents achieve
their goals through the use of plans that can be composed of sub-plans and that are
ultimately converted into actions. This approach is similar to the one used in the HTN
planning formalism, where methods are decomposed into operators. A plan body coded
in AgentSpeak [3] is typically a sequence of actions to be executed and further goals
to be achieved. AgentSpeak plans have three distinct parts [3]: the triggering event, the
context, and the body. Together, the triggering event and the context are called the head
of the plan. The three plan parts are syntactically separated by ‘:’ and ‘<–’ as follows:

Syntax of AgentSpeak Plans

1 triggering_event : context <- body.

The following code (miner.asl) corresponds to a plan in AgentSpeak generated from
our planning ontology instantiation. The scenario is the gold miners previously ex-
plained, and this example respects the presented AgentSpeak plan syntax [3]. Every
instance of the Operator concept is mapped to an agent plan: its name becomes the
triggering event, its preconditions form the context and its effects becomes the body.
Similarly, each instance of Method is also translated to an AgentSpeak plan, with its

corresponding preconditions and decomposition scheme. Both the operators and meth-
ods mantain their parameters when being converted from the ontology to agent code.

Our gold miners scenario instantiated in the ontology generates the miner.asl code
which is depicted below. It can be noted that the move Operator becomes a plan with
the triggering event +!move(Agent, From, To). The context of this plan is composed of
a conjunction of two instances of Predicate: at(Agent, From) and next(From, To). The
body (or effect) of this plan is to execute the external action move(Agent, From, To) in
the environment, to remove the belief at(Agent, From), and to add the belief at(Agent,
To). Similarly, our scenario depicts how a Method in our ontology is converted to an
AgentSpeak plan. The main difference from the Operator previously explained is that
the plan body is composed of goals to be achieved by the agent.

miner.asl (AgentSpeak code generated from our planning ontology)

1 +!move(Agent, From, To) :
2 at(Agent, From) & next(From, To) <-
3 move(Agent, From, To);
4 -at(Agent, From);
5 +at(Agent, To).
6

7 +!pursuitPosition(Agent, From, To) :
8 at(Agent, From) & next(From, To) <-
9 !move(Agent, From, To).

10

11 +!pursuitPosition(Agent, From, To) :
12 at(Agent, From) & next(From, X) <-
13 !move(Agent, From, X);
14 !pursuitPosition(Agent, X, To).

The contribution of this section is to sketch how an HTN domain in our ontology
can be mapped into an AgentSpeak program (however, detailed translation algorithms
and implementation are future work).

5.2 Converting from our OWL Planning Ontology to SHOP Domain Definitions

SHOP is a HTN planning system based on ordered task decomposition whose syntax
and semantics are given in [4]. In other words, SHOP is a HTN-planner implementation
which enables domain-independent automated planning. In HTN planning, the objec-
tive is to create a plan to perform a set of tasks (abstract representations of things that
need to be done), starting with an initial state-of-the-world. HTN planning is done by
problem reduction: planners recursively decompose tasks into subtasks until they reach
primitive tasks that can be performed directly by planning operators. A set of methods
is required in order to tell the planner how to decompose nonprimitive tasks into sub-
tasks, where each method is a schema for decomposing a particular kind of task into a
set of subtasks (provided that the preconditions are satisfied).

We briefly highlight SHOP syntax in the code below to facilitate the understanding
of how an instantiation can be converted from our ontology to SHOP specifications.
Similarly to our ontology, the SHOP formalism is composed of operators and methods,
which can contain preconditions and effects.

Syntax of SHOP Planning Domain Definitions

1 (defdomain domain_name (
2 (:operator (!operator_name ?parameters)
3 ((preconditions ?parameters))
4 ((negative_effects ?parameters))
5 ((positive_effects ?parameters)))
6

7 (:method (method_name ?parameters)
8 ((preconditions ?parameters))
9 ((method_or_operator ?parameters)))

10)

The following code illustrates the corresponding SHOP domain definition (named
gold miners) which corresponds to the previous explained scenario instantantied in our
ontology as example. We can observe that the instances of Operator and Method (and
its corresponding relationships) are converted in the generated miner.jshop specification
depicted below. More details about the algorithms to convert from our planning ontol-
ogy to the SHOP planning domain specifications (and vice-versa) can be found in the
next section of this paper.

miner.jshop (SHOP code generated from our planning ontology)

1 (defdomain goldminers (
2 (:operator (!move ?agent ?from ?to)
3 ((at ?agent ?from) (next ?from ?to))
4 ((at ?agent ?from))
5 ((at ?agent ?to)))
6

7 (:method (pursuitPosition ?agent ?from ?to)
8 ((at ?agent ?from) (next ?from ?to))
9 ((!move ?agent ?from ?to)))

10

11 (:method (pursuitPosition ?agent ?from ?to)
12 ((at ?agent ?from) (next ?from ?x))
13 ((!move ?agent ?from ?x) (pursuitPosition ?agent ?x ?to)))
14)

6 Planning and Ontology Conversions

This section demonstrates, in a high level of abstraction, the algorithms implemented in
Java to convert OWL ontologies to SHOP specification files, and vice-versa, which is
from SHOP domain definitions to the corresponding OWL ontology instances. Thus, we
established a bidirectional mapping among the elements of our OWL planning ontology
and the elements represented in the SHOP domain specifications. The same principle
might be applied to convert among our ontology and AgentSpeak code, such as previ-
ously demonstrated with an example in this paper, however algorithms for doing that
are not presented in this work.

6.1 Converting from the OWL Ontology to SHOP

The OWL API [5] was used to read the ontology elements and parse each one of them,
and Java was used to write them in a corresponding jshop file. OWL API is an open
source Java API (Application Programming Interface) for creating, manipulating and
serialising OWL ontologies.

The instances, concepts, properties and annotations in the ontology previously pre-
sented are queried and the corresponding SHOP component is generated to that specific
ontology element to construct the corresponding jshop file. For example, Operator’s
instances might be related with Parameter’s instances through the has-parameter prop-
erty, and with instances of Predicate by means of the properties has-precondition, adds-
predicate and deletes-predicate. The algorithm for converting the OWL to a jshop file
is the following:

for each instance df of DomainDefinition concept do
create the jshop corresponding file
operators← has-operator relationships of df
for each Operator op in operators do

extract op information from the ontology
write op parameters, conditions and effects in order

end for
methods← has-method relationships of df
for each Method met in methods do

extract met information from the ontology
write met parameters and flows in order

end for
end for

6.2 Converting from SHOP to the OWL Ontology

Previous section demonstrated how one example is converted from our ontology both
to SHOP specifications and AgentSpeak code. This section shows the algorithms to

convert both from the ontology to SHOP domain, and vice-versa, which are already
implemented. However, the algorithms to convert between ontology and agent plans
are currently being developed, but we already exemplified how this conversion can be
made in this paper.

The OWL API [5] was also used to write the ontology elements, after implementing
a parser in Java to read and interpret the jshop file. This approach makes the opposite
direction from the previous one, which converted from the OWL planning ontology to
a specification in SHOP.

In this algorithm, for each component found when parsing the jshop file, such as a
new operator or method, then the equivalent OWL individual is created with the OWL
API and included in the ontology instantiation being created (which can be instances,
object properties, data properties or annotations). For example, when reading an Oper-
ator, it is required to extract its parameters, preconditions and effects; however while
reading a Method, the information to be extracted concerns about its parameters and
flows. The algorithm to convert a jshop file to a corresponding instantation of our OWL
planning ontology is the following:

while there are tokens remaining in the jshop file do
token← nextToken()
if token = defdomain then

create corresponding DomainDefinition instance
end if
if token = operator then

create corresponding Operator instance
read its parameters, preconditions and effects
create the corresponding ontology elements

end if
if token = method then

create corresponding Method instance
read its parameters and flows
create the corresponding ontology elements

end if
end while

7 Final Remarks

We presented an investigation towards the integration of agent-oriented programming
and automated planning with semantic technologies. More specifically, this paper pro-
posed an ontology to represent planning formalisms. Our ontology was developed in
OWL [1] to represent HTN [2] domains and problems in the context of automated
planning and agent-oriented programming. The proposed ontology was instantiated to
exemplify its use and to demonstrate its feasibility. Also, we presented algorithms to

convert specifications between different formalisms such as OWL [1] and SHOP [4].
The algorithms have been coded in Java using the OWL API [5].

Given the similarities among planning formalisms and agent programming plans,
we also explored how to generate a corresponding AgentSpeak [3] code, which is a
logical language to program agent plans. As examples of relations between concepts
in these two formalisms we can currently highlight: method & plan; precondition &
context; and operator & external action. Thus, we also explored how to convert from our
OWL [1] planning ontology to AgentSpeak [3] plans, and vice-versa. In other words,
our approach enables new ways to derive both planning specifications and agent code.

As pointed out in [15], the use of OWL ontologies as a basis for modelling domains
allows the reuse of knowledge in the semantic web. However, research in this direction
is still in their initial steps. We have briefly discussed the state of the art of approaches
that integrate ontologies with planning and agent-oriented programming, commenting
on their findings and contributions.

As future work, we plan to investigate ontology reasoning mechanisms and seman-
tic technologies features within the scope of our planning ontology. One example would
be creating rules (e.g., in SWRL [9]) to infer knowledge such as inconsistencies in on-
tology instantiations. The ability to use ontologies to infer and generate knowledge over
a domain is a motivation to investigate how ontology representations can be integrated
with planning and agent-oriented programming. Thus, as next step in this direction, we
will explore advantages of using the semantic reasoning enabled by ontologies.

Another interesting area to explore is extending the planning ontology to address
further planning characteristics, such as non-deterministic HTN planning formalisms.
However, if the conceptualisation changes, the parsers may have to be adjusted ac-
cordingly to handle new concepts and properties in the ontology. Currently, we plan to
continue assessing the correctness of our algorithms (for converting between OWL [1]
to SHOP [4]) by testing them with more examples. Moreover, we are currently coding
the algorithms to convert beween the ontology and AgentSpeak [3].

This work investigated the conversion from OWL [1] ontologies to both SHOP [4]
and AgentSpeak [3], since these languages are used in our research project, but in a
similar way different planning systems and agent programming languages could also
be explored. The inclusion of ontology-based semantic technologies in such complex
multi-agent platforms is expected to bring together the power of knowledge-rich ap-
proaches and complex distributed systems.

Acknowledgements

Part of the results presented in this paper were obtained through research on a project
titled “Semantic and Multi-Agent Technologies for Group Interaction”, sponsored by
Samsung Eletrônica da Amazônia Ltda. under the terms of Brazilian federal law No.
8.248/91.

References

1. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. Technical report,
W3C (February 2004)

2. Erol, K., Hendler, J.A., Nau, D.S.: HTN planning: Complexity and expressivity. In Hayes-
Roth, B., Korf, R.E., eds.: AAAI, AAAI Press / The MIT Press (1994) 1123–1128

3. Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming multi-agent systems in AgentS-
peak using Jason. John Wiley & Sons (2007)

4. Nau, D., Cao, Y., Lotem, A., Avila, H.M.: SHOP: simple hierarchical ordered planner. In:
Proceedings of the 16th international joint conference on Artificial intelligence - Volume 2,
San Francisco, CA, USA, Morgan Kaufmann Publishers Inc. (1999) 968–973

5. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. Semant. web
2(1) (January 2011) 11–21

6. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing.
Int. J. Hum.-Comput. Stud. 43(5-6) (December 1995) 907–928

7. Baader, F., Horrocks, I., Sattler, U.: Description logics. In Staab, S., Studer, R., eds.: Hand-
book on Ontologies. Springer (2009) 3–28

8. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical OWL-DL rea-
soner. Web Semant. 5(2) (June 2007) 51–53

9. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language combining OWL and RuleML. W3C member submission,
World Wide Web Consortium (2004)

10. O’Connor, M.J., Das, A.K.: SQWRL: a query language for OWL. In Hoekstra, R., Patel-
Schneider, P.F., eds.: OWLED. Volume 529 of CEUR Workshop Proceedings., CEUR-
WS.org (2008)

11. Moreira, A.F., Vieira, R., Bordini, R.H., Hübner, J.F.: Agent-oriented programming with
underlying ontological reasoning. In: Proceedings of the 3rd international workshop on
Declarative Agent Languages and Technologies. DALT’05, Berlin, Heidelberg, Springer-
Verlag (2006) 155–170

12. Sirin, E., Parsia, B.: Planning for semantic web services. In: Semantic web services work-
shop at 3rd international semantic web conference (iswc2004). (2004)

13. Rajpathak, D., Motta, E.: An ontological formalization of the planning task. In: International
Conference on Formal Ontology in Information Systems (FOIS 2004). (2004) 305–316

14. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service composition
using SHOP2. Web Semant. 1(4) (October 2004) 377–396

15. Bouillet, E., Feblowitz, M., Liu, Z., Ranganathan, A., Riabov, A.: A knowledge engineering
and planning framework based on OWL ontologies. In: Proceedings of the Second Interna-
tional Competition on Knowledge Engineering. (2007)

16. Ilghami, O.: Documentation for JSHOP2. Technical report, University of Maryland, Depart-
ment of Computer Science, College Park, MD 20742, USA (May 2006)

17. Nau, D., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu, D., Yaman, F.: SHOP2: an
HTN planning system. J. Artif. Int. Res. 20(1) (December 2003) 379–404

18. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In van
Hoe, R., ed.: Proceedings of the 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World. MAAMAW ’96, Eindhoven, The Netherlands (1996) 42–55

	Semantic Representations ofAgent Plans and Planning Problem Domains

