Applied Ontology 12 (2017) 157-188 157
DOI 10.3233/A0-170182
10S Press

Model-driven engineering of multi-agent
systems based on ontologies

Artur Freitas *, Rafael H. Bordini and Renata Vieira

Pontifical Catholic University of Rio Grande do Sul (PUCRS), Brazil
E-mails: artur.freitas@acad.pucrs.br, rafael.bordini@pucrs.br, renata.vieira@pucrs.br

Abstract. Model-driven engineering provides abstractions and notations to improve the understanding and to support model-
ing, coding, and verification of applications for specific domains. Ontologies, on the other hand, provide formal and explicit
definitions of shared conceptualizations and enable the use of semantic reasoning. Although these areas have been developed
by different communities, significant synergy can be achieved when both are combined. These advantages can be explored in
the development of multi-agent systems, given their complexity and the need for integrating several components that are often
addressed from different angles. This work investigates how to apply ontologies for agent-oriented software engineering. Ini-
tially, we present a new modeling approach where multi-agent systems are designed by instantiating our proposed ontology. An
additional contribution is a tool that uses instantiated ontological designs to generate programming code for such systems. Sev-
eral advantages can be obtained from the application of our ontology-based approach, in terms of specification, development,
and verification of agent-oriented software, as indicated by the experiments we have carried out.

Keywords: Model-driven engineering, ontology, multi-agent system, agent-oriented software engineering

Accepted by: Roberta Ferrario

1. Introduction

Some of the key issues in developing Multi-Agent Systems (MAS) are: (i) techniques for integrat-
ing design and code; (ii) extension of agent-oriented programming languages to cover certain aspects
that are currently weak or missing (e.g., social concepts, and modeling the environment); and (iii) de-
velopment of debugging and verification techniques, with a particular focus on using model checking
in testing and debugging, and applying model checking to design artifacts (Bordini et al., 2006). Our
research is mainly concerned with two of these problems. First, it directly addresses the integration of
design and code, which is demonstrated in our approach to generating code from models represented
as ontology instantiations. Second, our approach enables features of semantic reasoning and verification
techniques on top of such instantiated ontological models. Mechanisms for solving the aforementioned
issues are claimed to be crucial for the practical adoption and deployment of agent technology (Bordini
et al., 2006). Thus, the investigation of software development methodologies should provide interesting
answers, solutions and improvements for problems in Agent-Oriented Software Engineering (AOSE).

Model-Driven Engineering (MDE) employs models as the cornerstone of software development pro-
cesses (Gascueifia et al., 2012) in order to improve productivity, portability, interoperability, maintenance,

*Corresponding author: Artur Freitas, Postal Code 90619-900, Av. Ipiranga, 6681 - Porto Alegre, Brazil. Tel.: +55-51-3320-
3500; E-mail: artur.freitas @acad.pucrs.br.

1570-5838/17/$35.00 © 2017 — IOS Press and the authors. All rights reserved

mailto:artur.freitas@acad.pucrs.br
mailto:rafael.bordini@pucrs.br
mailto:renata.vieira@pucrs.br
mailto:artur.freitas@acad.pucrs.br

158 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

and so on. MDE is a research area that provides abstractions and notations to improve the understand-
ing and support the modeling of applications for specific domains. These advantages can be employed
for developing MAS given their complexity and the need for integrating several components that are
often addressed from different angles. For example, the JaCaMo (Boissier et al., 2013) framework for
MAS programming combines three separate technologies: Jason (Bordini et al., 2007) for coding the
dimension of autonomous agents in AgentSpeak, CArtAgO (Ricci et al., 2006) for programming the
environment as artifacts in Java, and Moise (Hiibner et al., 2010) for specifying MAS organizations.
Currently, as the programmer has three distinct starting points to code the MAS, this makes it desirable
to have a single, unified and comprehensive meta-model that combines these dimensions. Besides filling
the gaps between design and development, this modeling framework can be the basis of features such as
code generation, support during programming, and reasoning to analyse a given system implementation.

In this context, modeling approaches are present in most agent methodologies (Gascueifia et al., 2012)
and MDE techniques for AOSE emerges naturally. A typical example of MDE for MAS is Prometheus
(Padgham and Winikoff, 2002); however, differently from our work, it does so without exploring any use
of ontology as part of its approach. In fact, there are already modeling frameworks contemplating more
than one dimension of MAS (Gascueia et al., 2012; Padgham and Winikoff, 2002; Uez and Hiibner,
2014), but without using ontology, semantic reasoning or employing the model during the programming
step. In the literature, when an ontology is used to model a MAS, only a part is modeled, such as the
environment (Okuyama et al., 2006) or organization (Zarafin, 2012). Currently, the use of ontologies
to model integrated frameworks that consider the co-specification of different MAS dimensions is still
an open issue (Freitas et al., 2014). We observe two additional points: (i) MDE and ontologies share a
number of principles and goals; and (ii) there is much work in combining ontologies and MAS. These
synergies led us to propose and investigate the use of ontology for MDE of MAS, which resulted in
a model-based approach that simultaneously covers all these issues. Moreover, we propose a tool to
load an ontological instantiation in order to generate code for the different MAS platforms that are part
of JaCaMo.! Our idea was derived when considering the research comparing ontologies with MDE
(Atkinson et al., 2006; Kappel et al., 2006; Staab et al., 2010), and also observing that when ontologies
are used in MAS it is usually with goals other than modeling MAS (Klapiscak and Bordini, 2008;
Mascardi et al., 2014; Moreira et al., 2005).

We started our investigation by systematically surveying the literature for current approaches and ad-
vantages that ontologies can provide for MAS. Then, we explored uses and benefits of applying ontology
in the global modeling of MAS where such framework has to offer support also for the programming
phase. A particular feature of our approach is that we are proposing the use of ontology as the basis
for modeling, development and verification of MAS. To the best of our knowledge, there is no previous
work that has achieved all that. Therefore, our main contributions are threefold. First, we argue that the
use of ontologies improves the modeling, programming and verification of MAS, which emerges from
our analysis of the state of the art and research directions on the integration of MDE, ontology and MAS.
Second, we propose and investigate an ontology that considers the global modeling of a MAS, as it in-
corporates the agent, environment and organization dimensions. This approach covers MAS design and
development as a whole in an integrated formalism. Third, we present our developed MDE tool (which
consists of an Eclipse plug-in) to support MAS programming in JaCaMo based on an instantiation of
our proposed ontology. This tool is our prototype for providing features such as drag-and-drop and
auto-complete to generate MAS code according to what was specified in a given ontology instantiation.

I'The following analogy may improve the reader’s understandability: the ontology proposed in this work acts as a meta-model,
and its instantiation represents a model, which in our case is applied to specify a MAS implementation project for JaCaMo.

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 159

This paper is structured as follows. Section 2 presents the background knowledge for the rest of our
work, which addresses the areas of MAS, MDE, and ontologies for MAS. Section 3 explains related
work through the interconnection of these areas, emphasizing previous ontologies related to MAS as-
pects: agents, organizations and environments. Section 4 explains our ontology-based MDE approach for
MAS modeling; Section 5 shows a tool we developed for MAS programming; and Section 6 presents an
empirical evaluation of our proposed ontology and tool. Then, our final remarks are given in Section 7.

2. Background

The design of complex systems should consider models that are clear to communicate, provide sup-
port during programming, and allow reuse and reasoning over the specification (Freitas et al., 2015).
Therefore, we investigate the use of ontologies for achieving such goals, as they can also offer code
generation features and help in organizing the many concepts which are involved in MAS’s modeling,
development and verification. Since ontology will be playing the role of a meta-model for MAS, this
Section briefly explains the main issues of MAS, MDE, and ontology that have led us to our proposal.

2.1. Multi-agent systems

Agents are reactive systems that can independently determine how to best achieve their goals and
perform their tasks (Bordini et al., 2007) while demonstrating properties such as autonomy, reactivity,
proactiveness and social ability. Agents are situated in an environment, where they can perceive and
modify it, and they should be able to exchange information, cooperate and coordinate activities. MAS
development integrates aspects from different dimensions (e.g., agent, environment and organization)
that are addressed by different technologies. For example, MAS programming in JaCaMo (Boissier et al.,
2013) requires the development of code in Jason, CArtAgO and Moise. These three distinct formalisms
and starting points to develop the MAS make desirable a single model combining all MAS’s dimensions
which can also offer an abstraction to such programming platforms. However, current AOSE models
and methodologies (e.g., Prometheus (Padgham and Winikoff, 2002)) are deficient in at least one of
the following areas of MAS development (Tran and Low, 2008): agent internal design (design of agent
mental constructs such as beliefs, goals, plans and actions), interaction design (design of interaction
protocols and exchanged messages) or organization modeling (design of acquaintances and authority
relationships amongst agents or agents’ roles). One problem in this scenario is that such characteristics
can appear only hard-coded in agent-oriented programming platforms without being fully and explicitly
contemplated in high-level models of MAS.

The development of MAS, like developing any software system, encompasses activities traditionally
classified into three broad areas (Bordini et al., 2006): software engineering (e.g., requirements elic-
itation, analysis, design), implementation (using some suitable programming language), and verifica-
tion/validation. In current practice, the way in which a MAS is typically developed is that the developer
designs the agent organization and the individual agents, then takes the detailed design and manually
codes the agents in some programming language. The problem with developing the implementation
completely manually from the design is that this creates the possibility for the design and implementa-
tion to diverge, which makes the design less useful for further work in maintenance and comprehension
of the system. Thus, it is desirable to have code and design being seen as different views on what is really
a single conceptual activity. The key thing that should be done with respect to this issue is developing
techniques and tools that allow for designs and code to be strongly integrated with consistency checking

160 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

and change propagation (Bordini et al., 2006). Among the possible approaches for eliminating the “gap”
between code and design there are: (i) the generation of code from design; and (ii) the extraction of
changes in design/code for applying to the other (Bordini et al., 2006). To consider useful the generation
of code from design, techniques are required to ensure the continued consistency of design and code
as one or the other is changed. Thus, such techniques must be developed to link one particular design
notation with one target programming language.

As design notation, UML (Unified Modeling Language), in its original form, provides insufficient
support for modeling MAS (da Silva and de Lucena, 2003), such as the ones developed in the JaCaMo
programming platform (Boissier et al., 2013). The coding of MAS in JaCaMo comprises three distinct
dimensions, namely: agent, environment and organization. However, these dimensions are not uniformly
integrated into a single formalism: agents are programmed in Jason (Bordini et al., 2007) using the
AgentSpeak language; environments are coded as artifacts in Java using the CArtAgO API (Ricci et al.,
2006); and organizations are specified in Moise (Hiibner et al., 2010) using XML. Jason (Bordini et al.,
2007) is an AgentSpeak language platform implementation that focuses on agent actions and mental
concepts; it is an open source interpreter that offers features such as speech-act based agent commu-
nication, plans annotation, architecture customization, distributed execution and extensibility through
internal actions. On the environment side of agent systems, CArtAgO (Ricci et al., 2006) is a platform
to support the artifact notion in MAS. Artifacts are defined as function-oriented computational devices
which provide services that agents can exploit to support their individual and social activities. Lastly,
the specification of agents at the organization level can be achieved using an organization modeling lan-
guage, such as Moise (Hiibner et al., 2010). Moise explicitly decomposes the specification of an organi-
zation into its structural, functional and normative dimensions. Some problems of this current approach
are that: (i) programmers have three distinct starting points to code the MAS; (ii) it is difficult to keep
track of problems because errors in one level can affect the other levels; (iii) it becomes cumbersome
to explore interconnections between the different layers; and (iv) it requires the programmer the knowl-
edge about different paradigms (Freitas et al., 2014). Agent-based systems require adequate techniques
that explore their benefits and their peculiar characteristics (da Silva and de Lucena, 2003). To address
these issues, we are proposing a unified semantic model which covers these three MAS programming
dimensions and integrates these formalisms. An integrated ontology model that represents these MAS
dimensions also enables semantic reasoning and can be used as a common vocabulary in agent-oriented
programming. These dimensions can interconnect with each other, and reuse relevant concepts from the
other MAS dimensions. Each dimension details different aspects, and these interconnections result in an
integrated knowledge model with a clear correspondence to an integrated programming platform, such
as JaCaMo (Boissier et al., 2013).

Currently, we have separate approaches for addressing the modeling and programming of MAS, result-
ing in gaps and conceptual divergences in AOSE. In this research we are interested in the use of ontology
for representing characteristics of multi-agent dimensions (agent, environment and organization). While
JaCaMo (Boissier et al., 2013) is a programming platform that uses three different formalisms for coding
MAS, Prometheus (Padgham and Winikoff, 2002) is an agent modeling approach but without applying
or exploring any formal ontology as part of its technique.

2.2. Model-driven engineering

Models help us understand a complex problem and its potential solutions through abstraction (Selic,
2003). Therefore, it seems obvious that software systems, which are often among the most complex

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 161

engineering systems, can benefit greatly from using models and modeling techniques. MDE is related
to the design and specification of modeling languages (Atkinson and Kiihne, 2003; Staab et al., 2010).
In short, MDE provides abstractions and notations for better understanding and easier modeling appli-
cations of a specific domain. It is usually applied to: (i) produce high-quality results quickly; (ii) reuse
solutions effectively; (iii) specify complex structured information concisely; (iv) design rich textual and
graphical notations; and (v) implement powerful runtime solutions. One of the basic principles of MDE
is to consider models as first class entities and any software artifact as a model or as a model element
(Bézivin, 2006). MDE employs models as the cornerstone of software development processes (Gascuefia
et al., 2012) in order to improve productivity, portability, interoperability, maintenance and so on. Also,
it is possible to gradually evolve an abstract software model into the final product through a process of
incremental refinement, without requiring a change in skills, methods, concepts, or tools (Selic, 2003).
However, the models must be formally connected to the actual software to ensure that programmers are
following the design decisions captured in a model during implementation (Selic, 2003).

Models are used to reason about a problem domain, design a solution in the solution domain, and they
are considered effective if (Roebuck, 2012): (i) they can serve as a basis for implementing systems; and
(ii) they make sense from the point of view of a user that is familiar with the domain. To be useful and
effective, an engineering model must possess, to a sufficient degree, the following five key characteristics
(Selic, 2003): abstraction, understandability, accuracy, predictiveness and inexpensiveness. Abstraction
is almost the only available means of coping with the complexity of the demand for ever-more sophis-
ticated functionality from our software systems. Since a model is always a reduced rendering of the
system that it represents, the essence can be more easily understood when details considered irrelevant
for a given viewpoint are removed or hidden. Understandability is a direct function of the expressiveness
of the modeling form used (expressiveness is the capacity to convey a complex idea with little direct in-
formation). A model with accuracy must provide a true-to-life representation of the modeled system’s
features of interest. A predictive model should be able to correctly predict the modeled system’s inter-
esting but nonobvious properties, either through experimentation (such as by executing a model on a
computer) or through some type of formal analysis. Finally, a model is considered inexpensive when it
is significantly cheaper to construct and analyze than the modeled system.

One of the most relevant MDE concept is the idea of meta-models, which are models to describe mod-
els. Meta-models define general concepts of a given problem domain and their relationships (Gascuefia
et al., 2012), and their advantage in the development process is the higher abstraction level to work with.
This role of meta-models is also played by ontologies, as highlights the next Section. Software models
capture relevant characteristics of a software artifact to be developed, yet, most often these software
models have no formal semantics or the underlying (often graphical) software language varies from case
to case in a way that makes it hard if not impossible to fix its semantics (Staab et al., 2010). Also, it is
not always clear how the concepts used to express the models mapped to the underlying implementation
technologies such as programming language constructs, operating system functions, and so forth (Selic,
2003). This semantic gap is exacerbated if the modeling language is not precisely defined, leaving room
for misinterpretation. Since ontology languages are described by meta-models and allow for describing
structural and behavioural models, they provide the capability to combine them with software modeling
languages (Staab et al., 2010).

Above, we provided several definitions for the most relevant terms backed up by different authors
from the MDE community and from the ontology community. However, we believe that it is important
to explain our own semantics about these terms. We consider both a meta-model and a modeling lan-
guage to be means of describing how a domain could be instantiated. Thus, a model is an instantiation

162 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

or a specific case that follows an explicit meta-model or modeling language. The definitions of ontology
from the literature are given in the next subsection, but our own definitions are given in sequence in
order to advance and establish a comparison with the MDE terms. Ontologies are formalized in a lan-
guage as well, and they can be created from scratch or include and extend some others as starting point.
An ontology can be seen as a conceptualization, usually referred as terminological components (TBox).
Then, an ontology can be populated/instantiated with facts or assertions, usually called assertion compo-
nent (ABox), which is associated with a terminological vocabulary. Shortly, TBox statements describe
a system in terms of controlled vocabularies, for example, a set of classes and properties; and ABox
are TBox-compliant statements about that vocabulary. These details will become clear as we advance
in the topic of ontology which brings background definitions from other authors that complement our
viewpoint.

2.3. Ontologies and multi-agent systems

Ontology is defined as an explicit specification of a conceptualization (Gruber, 1993), where a con-
ceptualization is an abstract, simplified view of the world that we wish to represent for some purpose.
Some essential properties of ontologies are: (i) ontologies describe a specific domain;? (ii) ontology
users agree to use the terms consistently; (iii) ontology concepts and relations are unambiguously de-
fined in a formal language by axioms and definitions; (iv) relationships between ontology concepts
determine the ontology structure, e.g., hierarchical or non-hierarchical (Hadzic et al., 2009). The gener-
alization/specialization relationship (i.e., “is-a” relationship) between two concepts is an example of a
hierarchical relationship between concepts; (v) ontologies can be understood by computers.

Ontology has different meanings within different contexts, e.g., in Philosophy and Metaphysics, on-
tology encompasses nature and existence, beings and relation between beings (Hadzic et al., 2009). The
resulting knowledge is intended to be explicit, shared and understood by humans. In Computer Science
and Artificial Intelligence, ontology is used to formally and explicitly represent shared domain knowl-
edge through definitions and axioms of concepts and relationships between concepts (Hadzic et al.,
2009). This work refers to ontology in the context of Computer Science and Artificial Intelligence, in
which one of the main differences is that ontologies are designed to be machine-understandable.

Ontologies are knowledge representation structures, usually based on Description Logics (Baader
et al., 2004), composed of concepts, properties, individuals, relationships and axioms. A concept (or
class) is a collection of objects that share specific restrictions, similarities or common properties. A prop-
erty expresses relationships between concepts. An individual (instance, object, or fact) is an element of
a concept. A relationship instantiates a property to relate two individuals. Finally, an axiom (or rule)
imposes constraints on values of concepts or individuals normally using logic languages (that can be
used to check ontological consistency or infer new knowledge).

Ontology empowers the execution of semantic reasoners that provide functionalities such as consis-
tency checking, concept satisfiability, classification, and realization. In other words, reasoners are able
to automatically infer logical consequences from a set of axioms. Pellet (Sirin et al., 2007) is one ex-
ample of semantic reasoner implementation over OWL ontologies. OWL (Web Ontology Language) is
a language for processing web information and semantic web standard formalism to explicitly represent
the meaning and relationships of terms (Bechhofer et al., 2004).

2This definition we cited claims that an ontology describes a specific domain, which means a part of knowledge in some
degree. It does not claim that all ontologies are domain specific, because there are the so called upper level (or foundational)
ontologies.

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 163

Ontologies can offer significant benefits for MAS (Tran and Low, 2008): interoperability, reusability,
support for MAS development activities (such as system analysis and agent knowledge modeling) and
new features for MAS operation (such as agent communication and reasoning). Also, ontologies may be
used at different stages within MAS (Hadzic et al., 2009) so as to: enable decomposition of the overall
problem; support the process of information retrieval and reuse; support the process of analysing and
manipulating information; and enable communication between cooperatively working agents. We con-
sider that these essential properties have a role to play in the process of modeling and development of
complex systems, and models based on these underlying properties may be explored in many different
ways. More specifically, this research is interested in investigating the use of ontology for designing
MAS. We have investigated an ontology-based MDE approach as an integrated global model of MAS’s
main characteristics, and explored ways of using such model to support MAS programming. Although
the advantages of ontologies for agents are clear (Tran and Low, 2008), few MAS platforms currently
integrate ontology techniques. Limited ontological support is provided by the AOSE methodologies
since they do not incorporate ontologies throughout the entire systems development life cycle nor con-
sider ways in which ontologies can be used to account for interoperability and verification during design
(Tran and Low, 2008).

The interest in using ontology with agent systems is not recent. For example, the InfoSleuth project
in the late 90’s used ontologies to model agents and included explicit ontology agents (Bayardo et al.,
1997). Ontologies in InfoSleuth were used to specify both the infrastructure underlying the agent-based
architecture and to characterize the information content in the underlying data repositories. According
to its authors, their motivations for using ontologies were two-fold: (i) capturing and reasoning about
information content (e.g., database schema, conceptual models); and (ii) specification of the agent in-
frastructure (e.g., agent configurations, and workflow specifications). The ontology agents managed the
semantics of the domain/environment in which the agents operate, and the ontology models for agents
described the agents’ knowledge and attributes. One of our main differences is that the ontology mod-
els in that paper had been used for interoperability, but not to support implementation like the MDE
models in our work. Also, that work used technologies from that time, for example, their agents were
implemented using Java, which is not considered an agent-oriented programming language.

In this Section we explained the topics of MAS, MDE, and ontology. We already started to link areas
among each other, and their interconnections are explored with more detail in the next Section.

3. Literature review

This Section shows the connections among MDE, MAS and ontologies from three viewpoints. First,
we discuss the importance and advantages of models for MAS. Second, relations of MDE with ontolo-
gies are given. Third, combinations of ontologies with MAS are shown with emphasis on approaches
that use ontology for modeling MAS.

3.1. Model-driven engineering and multi-agent systems

Several models and methodologies can be found in literature to formalize and define the processes of
MAS design and implementation. For example, Prometheus (Padgham and Winikoff, 2002) is one of
the most well known MAS modeling methodology for developing intelligent agent systems. It defines
a development process with associated deliverables proven to be effective in assisting developers to
design, document, and build agent systems based on concepts such as goals, beliefs, plans, and events.

164 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

Prometheus (Padgham and Winikoff, 2002) contains three phases: system specification, architectural
design and detailed design. It starts with the system specification phase, which focuses on identifying
the basic system functionalities, along with inputs (percepts), outputs (actions) and any important shared
data sources. Then, the architectural design phase uses the outputs from the previous step to determine
which agents the system will contain and how they will interact. Lastly, the detailed design phase looks
at the internals of each agent and how it will accomplish its tasks within the overall system. Among
future work for Prometheus (Padgham and Winikoff, 2002) there is the introduction of social concepts to
improve its current models. Therefore, some aspects of MAS are not covered by models in Prometheus,
which also does not explore the use of formal ontology as part of its approach.

Prometheus is usually used as reference for combining MDE with MAS. For example, the Prometheus
AEOlus (Uez and Hiibner, 2014) allows the integrated development of the three MAS dimensions (agent,
environment and organization). It contributes with: (i) a new meta-model that combines the meta-models
of Prometheus and JaCaMo; (ii) a new interactive incremental process based on the Prometheus process;
and (iii) a code generation approach for JaCaMo based on this new meta-model. Prometheus AEOlus
(Uez and Hiibner, 2014) improves modeling, code generation and reduces the conceptual gap between
the analysis and implementation phases. It extends Prometheus by including concepts to consider the
environment and organization dimension of JaCaMo, and it applies concepts from JaCaMo to improve
Prometheus development process to ensure that concepts used during the design and analysis stages
will be used in the implementation stage. However, the meta-model is not integrated with semantic
technologies, reasoners, ontologies and it is not used during MAS programming. The code generation in
Prometheus AEOIlus (Uez and Hiibner, 2014) requires the refinement of entities in the model to generate
code (for JaCaMo components, i.e., Jason, Moise and CArtAgO). Thus, the models must be refined
to include platform-specific information, and once the first version of the MAS code is generated, the
models are no longer used during the programming step to complete the MAS development.

Research in the direction of building tools for developing MAS through exploiting MDE techniques
have led to a new proposal (Gascuefia et al., 2012) of using Ecore with Prometheus. Ecore is used by the
Eclipse Meta-modeling Framework to define meta-models, and it is applied to develop the meta-model
concepts specific to Prometheus. More specifically, this work addressed the generation of MAS graphical
editors based on the models and how agent code generators can be developed from such visual models.
In the end, MAS programming code can be generated from the models, ranging from code skeletons
to completely deployable products (Gascueiia et al., 2012). To demonstrate this claim, templates have
been created to automatically generate code in JACK language, which uses the BDI model to represent
the internal structure of its agents. Once the model is converted to code, the developer must continue
the MAS programming phase without using the model. Similarly as we see in other related work, this
approach does not explore ontology as part of it and the MDE proposal is not used during MAS coding.

New aspects of MAS for programming platforms are also created and proposed as models by Zatelli
and Hiibner (2014). Their models specify the interaction as a first-class abstraction to define MAS with
respect to agents, environment, interaction, and organization. The interaction allows the definition of the
desired sequence of steps to achieve the organizational goals (while the organizational goals provide in-
formation about what the agents need to do, the interaction protocols provide a more detailed description
about how to behave to achieve them). More specifically, this work presents a conceptual model for the
interaction component, a programming language to specify the interaction, and how the proposed ap-
proach could be integrated in the JaCaMo MAS platform. Such contributions allow developers to model
the interaction in a separate component. Thus, the interaction does not need to be hard-coded inside the
code of agents or other components (Zatelli and Hiibner, 2014).

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 165

MAS-ML is a Multi-Agent System Modeling Language (da Silva and de Lucena, 2003) that extends
UML based on TAO (Taming Agents and Objects). The TAO meta-model defines the static and dynamic
aspects of MAS. New diagrams — Organization and Role diagrams — have been created because of the
set of different elements and relationships defined in the TAO meta-model that have been incorporated
in the UML meta-model. Also, UML diagrams that already exist — Class and Sequence diagrams — have
been adapted. Explanations about the diagrams can be found as follows (da Silva and de Lucena, 2003):

— The Sequence diagram represents the dynamic interaction between the elements that compose a
MAS -i.e., between objects, agents, organizations and environments.

— The extended Class diagram also represents agents, organizations and the relationships between
agents, organizations and classes as defined in TAO.

— The Organization diagram models the system organizations identifying their habitats, the roles
that they define and the elements — objects, agents and sub-organizations — that play these roles.

— The Role diagram is responsible for clarifying the relationships between agent roles and object
roles.

MAS-ML has as similarity with our proposal the fact of defining agent, organization and environment as
first order abstractions. However, our approach proposes to include the use of ontology as meta-model
for MAS. Also, MAS-ML claims that it would be easier to use a programming language that consid-
ers these elements as first order abstractions to implement MAS-ML models (da Silva and de Lucena,
2003). While MAS-ML states as contribution “the mapping of the design elements in the agent level of
abstraction to a programming language” but without determining a specific programming language, our
proposal focuses on JaCaMo.

Model-Driven Development with agent-based models can facilitate the implementation of methods
and tools for the development of MAS (Pavén et al., 2006). This Section links MDE with MAS and it
shows that models are commonly used to generate code automatically, but without making use of ontolo-
gies, or without offering any type of model-based support during the programming and verification steps.
In most cases, agent-oriented methodologies focus on the agent concept at the analysis level or look for
visual or formal representations of elements present in an already implemented agent framework. We
believe that such models can play a role not only in model transformation approaches that generate a first
or skeleton version of MAS code, but also being employed until the end of MAS development. However,
moving from agent models to implementation is, currently, not fully addressed by most agent-oriented
methodologies in a systematic way (Pavén et al., 2006), which leaves a gap between design and imple-
mentation. The approaches presented in this Section so far do not relate the models with ontologies in
the areas of AOSE. In further Sections, we present the current research in this direction, but first next
Section discusses relations of MDE with ontologies from a general viewpoint (without focusing on the
specific context of MAS).

3.2. Model-driven engineering and ontologies

Usually, models are specified by instantiating meta-models, but none of the approaches in MDE we
see in previous Section for MAS explores ontology for improving MAS modeling. The definitions we
found (Atkinson et al., 2006) claim that “all ontologies are models, but not all models are ontologies”,
however “there is no widely accepted definition of what distinguishes models from ontologies”. These
two areas are, superficially, very similar, and in fact are sometimes visualized using the same language
(e.g., UML). To better characterise their differences, we observe that models tend to use the close world

166 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

assumption and focus on realization issues, while ontologies usually rely on the open world assumption
and focus on capturing abstract domain concepts and their relationships (Atkinson et al., 2006).

Also, ontologies and meta-models are usually designed with different goals in mind (Kappel et al.,
2006). For example, meta-models prove to be more implementation-oriented as they often bear design
decisions that allow producing sound, object-oriented implementations. Due to this, language concepts
can be hidden in a meta-model, but they have to be made explicit in an ontology (Kappel et al., 2006).
In fact, there are proposals to create ontologies from meta-models, such as the lifting procedure (Kappel
et al., 2006), which was designed to achieve semantic integration in modeling languages.

Other research directions rely on exploring these areas in interconnected ways, which is, for example,
the application of MDE with ontology technologies (Staab et al., 2010). Since OWL 2 has not been
designed to act as a meta-model for defining modeling languages, Staab et al. (2010) show how to build
such languages in an integrated manner by bridging pure language meta-models and OWL in order to
benefit from both approaches. However, these areas differ in some other points (Atkinson et al., 2006)
such as: (i) ontologies are generally used for run-time knowledge exploitation while models are not
intended to contain instance data or be accessible at run-time; (ii) ontologies usually support “reasoning”
while models cannot (or do not); and (iii) ontologies are expected to be represented with well-defined
semantics in a language like OWL while models in a less precise language like UML. This reference
does not claim that models do not contain instance data, but that models are not intended to contain it.
Our goal in mentioning this is to expose several different authors’ viewpoints in these areas since it is
acknowledged that some definitions remain ambiguous and confusing.

Although the research areas of MDE and ontologies have been developed by two different commu-
nities, important synergies can be achieved by combining them. However, there are open research chal-
lenges for ontological approaches to model engineering, e.g., in which tasks ontologies and software
models can be optimally used together and how ontologies should be integrated into MDE. Such in-
vestigations will lead to ways in which they can be made compatible and linked so as to benefit both
communities.

This Section discussed relations of MDE with ontologies from a general viewpoint, i.e., without fo-
cusing on the specific context of MAS. Next Section shows approaches where ontologies are used in and
for MAS. We highlight two different roles played by ontologies in MAS: situations where they are used
without addressing modeling issues; and situations where ontologies are considered for AOSE.

3.3. Multi-agent systems and ontologies

One of the first approaches to consider ontologies to enhance agent programming is AgentSpeak-DL
(Moreira et al., 2005). However, AgentSpeak-DL focuses on using ontology during agent reasoning,
instead of modeling aspects of MAS in ontologies. AgentSpeak-DL extends agents’ belief base with
Description Logic, in which the belief base includes: (i) one immutable TBox (terminological box, or
conceptualization) that characterises the domain concepts and properties; and (ii) one ABox (assertion
box, or instantiation) with dynamic factual knowledge that changes according to the results of environ-
ment perception, plan execution and agent communication. AgentSpeak-DL approach enriches the agent
belief base with the definition of complex concepts that can go beyond factual knowledge. The advan-
tages of integrating agents and ontologies pointed out by Moreira et al. (2005) are: (i) more expressive
queries in the belief base, since results can be inferred from the ontology and thus are not limited to ex-
plicit knowledge; (ii) refined belief update given that ontological consistency of a belief addition can be

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 167

checked; (iii) the search for a plan to deal with an event is more flexible because it is not limited to uni-
fication,? i.e., it is possible to consider subsumption relationships between concepts; and (iv) agents can
share knowledge using ontology languages such as OWL. Although such advantages enable new reason-
ing mechanisms for MAS by means of ontologies, our work investigates a different research direction in
which ontologies are used as part of AOSE methodologies to aid modeling and implementation of agent
systems.

JASDL (Klapiscak and Bordini, 2008) also merges agent belief base and ontological reasoning since it
implements AgentSpeak-DL to provide Jason agents with ontology manipulation capabilities using the
OWL API. Agent programmers benefit from features such as plan trigger generalization based on onto-
logical knowledge and the use of such knowledge in belief base querying (Klapiscak and Bordini, 2008).
Some Jason modules were altered to implement JASDL such as: the belief base was extended to partly
reside within an ontology ABox, which, combined with a DL reasoner, facilitates the reuse of available
knowledge in ontologies (to increase inferences that an agent can make based on its beliefs and assure
knowledge consistency); the plan library to enable enhanced plan searching; and the agent architecture
to augment it with message processing to obtain semantically-enriched inter-agent communication.

CooL-AgentSpeak (Mascardi et al., 2014) is an extension of AgentSpeak-DL with plan exchange and
ontology services. It implements a CArtAgO artifact functioning as an ontology repository tool which
stores a possibly dynamic set of ontologies and offers related ontology matching and alignment features.
It searches for ontologically relevant plans not only in the agent’s local plan library, but in the other
agents’ libraries too, according to a cooperation strategy not based solely on unification and subsumption
relations between concepts, but also on ontology matching. In short, CooL-AgentSpeak (Mascardi et al.,
2014) performs cross ontological unification for agents that do not disclose their ontologies to each other
(that cooperate while preserving their privacy).

So far, this Section presented approaches for incorporating ontological reasoning in agents. Although
the advantages of using ontologies for agents are clear, few agent-oriented platforms are currently inte-
grated with ontology techniques. Next we focus on examples of ontologies proposed for modeling MAS.
Some aspects of MAS, such as the organizational properties found in Moise (Hiibner et al., 2010), are
already related to a programming framework, allowing to convert the ontology specification to a pro-
gramming level (Zarafin, 2012), which provides more flexibility for modeling and developing agent
organizations. Such OWL semantic description of MAS organizations also helps agents in becoming
aware, querying, and reasoning about their social and organizational context in a uniform way (Zarafin,
2012). Another related work proposes an environment ontology (Okuyama et al., 2006) based on MAS
environment aspects of agent programming technologies. This model can be used to specify environ-
ments and derive a project-level, complete, and executable definition of multi-agent environments. Se-
mantic representations of MAS environments also improve the way agents reason about the objects with
which they interact and the overall environment where they are situated (Okuyama et al., 2006). This
is important because most agent-oriented programming languages are weak in allowing the developer
to model the environment within which the agents will execute (Bordini et al., 2006). Such ontology
models are desirable for all dimensions of MAS at the same time, but these levels have to be aligned so
that they work as a common specification. This will make possible to model, reuse and extend a MAS
in one dimension while maintaining the others, which enables the designer to work without going into
specifics of the programming languages that define each dimension. In this context, a MAS would be

3The traditional plans’ unification relies on pattern matching mechanisms based only on syntax and lexical approaches for
comparing plans. Thus, semantics is not considered to infer that a plan could be attempted in a given situation.

168 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

more easily designed, expressed and communicated, and a specific modeled project might be verified
and converted to code.

As far as we know, the use of ontology to support modeling, development and verification of MAS
in the context of MDE is a new idea currently not fully explored in literature. We have found the use
of ontologies to represent only partial aspects of MAS, such as an environment ontology (Okuyama
et al., 2006) based on environment aspects of agent programming technologies. The use of an environ-
ment ontology adds three important features to existing multi-agent approaches (Okuyama et al., 2006):
(i) ontologies provide a common vocabulary to enable environment specification by agent developers
(since it explicitly represents the environment and agent essential properties, defining environments in
ontologies facilitates and improves the development of multi-agent simulations); (ii) an environment on-
tology is useful for agents acting in the environment because it provides a common vocabulary for com-
munication within and about the environment (it allows interoperability of heterogeneous systems); and
(iii) environment ontologies can be defined in ontology editors with graphical user interfaces, making
easier for those unfamiliar with programming to understand and design such ontologies. An environment
description is a specification of its properties and behaviour, which includes concepts such as: objects
(i.e., resources of the environment); agents (i.e., their “physical” representation in the environment that
is visible to other agents); actions that each type of agent can perform in the environment; reactions of
the environment and objects when an agent’s actions affect them; perception types available to each type
of agent; and observable properties, that is, the information about the simulation to which observers
(e.g., the agents) have access.

In Okuyama et al. (2006), the relationship between the environment and other MAS dimensions was
already foreseen, since they mention the intention of looking at higher-level aspects of environments,
i.e., social environment aspects of agents, such as the specification of social norms and organizations
in agent societies. In fact, on the MAS organization dimension, there is a semantic description of MAS
organizations (Zarafin, 2012) using OWL to develop an ontology for organizational specifications of
the Moise model (structural, functional, and normative levels). This approach helps agents in becoming
aware, querying, and reasoning about their social and organizational context in a uniform way. Also,
this work makes possible to convert between the ontology and the Moise specification, providing more
flexibility for modeling and developing agent organizations. The semantic description of Moise (Zarafin,
2012) provides agent-side reasoning, querying features and benefits such as increased modularization,
knowledge enriching with meta-data, reuse of specifications, and easier integration. With the semantic
web effort aiming to represent the information in semantic formats, the MAS community can take ad-
vantage of these new technologies in MAS development tasks such as to integrate organizational models,
to monitor organizations, and to analyze agent societies (Zarafin, 2012).

A comparison among related work and with the research in this paper is depicted in Table 1. It shows
that there are already models and MDE approaches for more than one MAS dimension (Gascueiia et al.,
2012; Padgham and Winikoff, 2002; Uez and Hiibner, 2014), but without using ontologies, semantic
reasoning, or employing the model during the programming step. We also compare ontologies with
MDE (Atkinson et al., 2006; Kappel et al., 2006; Staab et al., 2010), and we show that ontologies are
used to extend MAS capabilities, but with other goals than modeling (Klapiscak and Bordini, 2008;
Mascardi et al., 2014; Moreira et al., 2005). When an ontology is used for MAS modeling, only a
part is modeled, such as the environment (Okuyama et al., 2006) or the organization (Zarafin, 2012).
Next Section explains our work which consists of an ontology for MAS modeling, while the other
following Section presents our tool for MAS development using the proposed ontology. Our research
combines MDE with an ontology perspective for building MAS, and we integrate concepts from different

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 169
Table 1
Comparing related work in the areas of MDE, MAS and ontologies
Research Overview of the work Inclusion of ontologies Dimensions of MAS
MAS modeled platforms
used
Model-Driven Engineering and Multi-Agent Systems
Prometheus (Padgham Model and methodology for ~ No Agent, JACK
and Winikoft, 2002) MAS development environment and
organization
Prometheus AEOlus Approach for MAS No Agent, JaCaMo
(Uez and Hiibner, modeling and programming environment and
2014) organization
MDE for MAS Ecore meta-model of No Agent, JACK
development Prometheus for MAS environment and
(Gascueiia et al., 2012) development in Eclipse organization
MAS interaction A conceptual model and No Interaction JaCaMo
component (Zatelli and programming language for
Hiibner, 2014) MAS interaction aspects
MAS-ML (da Silva MAS modeling language No Agent, Unspecified
and de Lucena, 2003) that extends UML based on environment and
TAO organization
Ontologies and Multi-Agent Systems
AgentSpeak-DL An approach for using Agents get means to Ontologies extend AgentSpeak
(Moreira et al., 2005) ontologies during agent represent knowledge and agents’ belief base
reasoning interact with ontologies with DL
JASDL (Klapiscak and ~ An implementation of Jason agents can represent Ontologies extend Jason
Bordini, 2008) AgentSpeak-DL in Jason knowledge and interact with ~ agents’ belief base
ontologies with DL
CooL-AgentSpeak AgentSpeak-DL’s extension ~ Each agent has its private Ontologies extend Jason
(Mascardi et al., 2014) with plan exchange and ontologies agents’ belief base
ontology services with DL
Ontologies for Modeling Multi-Agent Systems
MAS env. ontology Ontology to specify and A new ontology for Environment Unspecified
(Okuyama et al., 2006) derive definitions of MAS modeling MAS
environments environments
MAS org. ontology A semantic description of A new ontology for Organization Moise
(Zarafin, 2012) Moise organizations in OWL modeling Moise
This work An ontology and a tool for A new ontology for AOSE Agent, JaCaMo
model-driven development (modeling, development and environment and
of MAS verification of MAS) organization

agent dimensions in a single framework, so agent-oriented software engineers benefit from receiving
new methodologies and tools to develop their systems as result of this comprehensive approach. In
this context, our research pioneers in covering all these issues at the same time, since it consists of an
ontology for MAS modeling and a model-based tool for MAS development and verification. Advantages
derived from such approach are techniques for: (i) integrating design and code; (ii) supporting MAS
programming with automatic code generation through model-based development; and (iii) performing
verification with focus on the use of semantic reasoning and model checking.

170 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies
4. An ontology modeling approach for engineering multi-agent systems

We claim that ontologies have an important role for all MAS dimensions and in the whole system
development, rather than exclusively in the programming phase. This is in line with CArtAgO devel-
opment directions (Ricci et al., 2006) in considering ontologies to represent the artifacts, with Moise’s
recent research which proposes a semantic description of multi-agent organizations (Zarafin, 2012), and
with ontologies of MAS environments (Okuyama et al., 2006). These are however all separate initia-
tives, whereas in the development of MAS an ontology should interconnect the various specification
levels. This allows for a unified view of systems engineering, and should co-exist with integrated agent
platforms, such as JaCaMo (Boissier et al., 2013). As result, developers obtain a new paradigm for de-
veloping complex software systems with a semantic infrastructure applying the software and knowledge
engineering principles. Unified MAS platforms, such as JaCaMo (Boissier et al., 2013), are being devel-
oped with the purpose of helping developers to build these complex projects, however, such unification
must happen during the system design and at the modeling and knowledge level. Thus, we investigate
the integration of agent programming platforms by applying ontology to streamline MAS development
in JaCaMo.

We focus on a model-based approach using ontology to cover all required dimensions and abstrac-
tions of MAS. This differs from other approaches where: (i) ontologies are not used; (ii) only a part
of such systems is modeled in ontologies; or (iii) the model is not integrated with coding or verifica-
tion mechanisms. In our work, an ontology is used for modeling MAS and a model-based tool supports
the steps of programming and verification. Thus, our motivation resides in improving MAS modeling
and development by exploring ontology and MDE approaches. We performed several steps to achieve
such contributions. We first investigated ontologies and model-based development approaches in MAS
to address questions such as MAS modeling, knowledge representation and reasoning. Our results in
this direction are reported in the previous Section, which contains a literature review in these areas,
and a comparative analysis of existing solutions to identify their limitations. Then, we elaborated an
ontology-based approach in the domain of MAS modeling to support developers of such systems. In
this context, this Section presents our MAS ontology model; and the next Section explains the current
developments of our MDE ontology-based tool. These Sections answer questions such as: (i) How to
specify/model a MAS as ontology? (ii) How ontology-based elements can support MAS codification?
and (iii) Which tools/benefits/reasoning may derive from such representation? We also point out: (i) the
addition of ontology reasoning in our model of MAS; (ii) improvements to our MAS ontology-based
tool; and (iii) current and future evaluations of these approaches in MAS modeling, development and
verification.

In our work we have designed an ontology to define the main abstractions of MAS, namely the con-
cepts from agents, environments and organizations. The underlying idea in our research is that the con-
ception of any MAS project should start by modeling it in this ontology. This can be done by extending
top-level concepts, and adding new instances and properties in order to specify the corresponding de-
sired project to be implemented in terms of agent-oriented concepts. In such approach the MAS is first
modeled based on our upper ontology of agent systems, which uses a single formalism to encompass the
global characteristics of MAS. In these terms, our ontology can be seen as a language, a meta-model,
a high-level conceptualization, or as a domain-independent model of every possible agent systems in
which agent developers would use it to model/extend/instantiate their specific agent system project. The
result from using the proposed ontology as a meta-model to define a specific MAS project is an instan-
tiated ontology that corresponds, for example, to a project in JaCaMo.

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 171

Our investigation is also related with the exploration of approaches and tools that can apply such
instantiated ontology model during the MAS coding step to offer support for programming and the
use of ontology reasoning in our models to perform verifications in a specified project of MAS. We
demonstrate in this paper how an instantiated model of our ontology can be applied to support the
generation and development of MAS code. For example, elements in the MAS ontology model can be
transformed into MAS code, such as by dragging content from model to code. Such modeling approach
for MAS also enables the execution of inferences and verifications over the MAS instantiated ontology
model, and reverse engineer can be applied for making transformations from MAS code to models.

Current frameworks for MAS development integrate different aspects concerning the agents, their
environment and the organization in which they act. Following this, our MAS ontology model contains
concepts to represent, in a single formalism the three MAS dimensions usually required (as, for instance,
in JaCaMo are the agent dimension in Jason, the environment layer in CArtAgO, and the organization
elements in Moise). A particular MAS begins to be modeled by extending the proposed ontology, which
is done by creating new subclasses to its top-level concepts. Then, individuals are created in the pro-
cess of instantiating the extended ontology. Also, the corresponding additional properties and relations
among concepts and instances should be specified in this moment. Our ontology-based approach allows
to model, reuse and extend a MAS in one dimension while maintaining the others, and designers can
create models without going into specifics of the programming languages that define each dimension.
In this context, a MAS design is better expressed and communicated, and the model can be more easily
converted to code or a formal verification system.

The concepts from our ontology model were defined by analysing and combining the meta-models of
Prometheus (Padgham and Winikoff, 2002) and JaCaMo (Boissier et al., 2013). These MAS frameworks
were also used in a related work (Uez and Hiibner, 2014), but without considering an ontology and
without presenting a model-based development tool. Figure 1 shows the main concepts and properties
in our ontology model, which are grouped according to the three MAS dimensions previously discussed
(agent, environment and organization). The ontology represents different MAS concerns while allowing
to relate them, therefore offering advantages such as increased maintainability, usability and extensibility
for MAS modelers and developers. This approach also allows to gradually refine from high-level abstract
views to elements directly available in concrete technical MAS programming platforms.

From the agent dimension, we are not interested in defining any possible and generic characteristics of
any kind of agent, such as physical agents. Instead, we are interested in specifying only the concepts of
virtual agents that make sense in the context of programming for this dimension, such as the characteris-
tics of Jason implemented agents. The most important concepts from the agent dimension are the Agents

Agent I Environment | Organizationl m extends-role
n targets-role
Percept Environment
Belief i Norm > Role
has-space A
\nibeﬁef has-percept]) contains-role
sends-messag ' ‘has-artlfact
l—— — Artifact Space
Message Agent targets-mission Group
has-receiver .
as-plan ihas-action Vhas-property has-operation i m contains-subgoal
has-goal
Plan Action O;rs:';:;h! Operation Mission > Goal

Fig. 1. Main concepts and properties in the MAS ontology model.

172 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

along with their Actions, Percepts and Messages. Agent is domain of properties such as has-action,
has-percept and sends-message. The main concepts and properties regarding the agent dimension are
depicted on the left side of Fig. 1.

From the environment dimension, we are also not interested in defining any possible and generic
characteristics of any kind of environment, such as physical environments. Instead, we are interested in
specifying only the concepts of virtual environments that make sense in the context of programming for
this dimension, such as the characteristics of CArtAgO implemented environments. From the environ-
ment perspective, the main concepts are the Artifacts, Spaces, Operations and Observable Properties.
Artifacts can be either the target (outcome) of agent activities, or the tools used by agents as means to
support their activities (consequently, artifacts reduce the complexity of agents tasks’ execution). This di-
mension contains properties such as has-artifact, has-operation and has-observable-property. The main
classes and properties regarding the environment dimension are depicted in the center of Fig. 1.

From the organization dimension, similar to how the other dimensions were considered, we are not
interested in defining any possible and generic characteristics of any kind of organization. Instead, the
ontology is interested in specifying only the concepts of organizations that make sense in the context of
programming for this dimension, such as the characteristics of Moise implemented organizations. Thus,
the organization dimension specifies concepts such as Role, Goal, Group, Norm and Mission. A Role
definition states that agents playing that role are willing to accept the behavioural constraints related
to it. The organization functional dimension specifies how global collective Goals should be achieved,
i.e., how they are decomposed in global plans, grouped in coherent sets (missions) to be individually
distributed to agents. The normative dimension binds the structural level with the functional one to
specify role’s permissions, prohibitions and obligations for missions. Thus, exemplar properties in the
organization dimension are that Group contains-role Role, Mission has-goal Goal and Norm targets-role
Role. The main classes and properties regarding MAS organizations are depicted on the right side of
Fig. 1. In the literature it is possible to find considerable research on ontology for representing generic
organizational characteristics, however, it is inadequate to this ontology needs and goals, since it is
interested in one special type of organization: how agents can be organized inside the structure offered
by Moise. Thus, the definition of some concepts such as role, group, and so on, may differ between those
works and ours, mainly because of such implementation-oriented approach for this specific viewpoint in
the domain of MAS organizations.

The organization dimension can address ontological support for interactions among the agents, as
first-class objects, by means of protocols and commitments. For some MAS, the structural character-
istics of organizations are more important to be highlighted and demand more details to be modeled
than functional or behavioral properties. In these cases, methodologies to support interactions explic-
itly are desirable. Existing ontologies for commitments in MAS provide a conceptual point of view for
comprehending advanced organizational details in the form of interactions and commitments. One of
these ontologies (Singh, 1999) defines a commitment as involving a proposition with three participating
agents: a debtor, a creditor, and a context group. Also, different kinds of commitments are defined, such
as obligation, taboo, convention, and pledge. It is important to be aware of these high-level conceptual
viewpoints when aiming to integrate such ideas from theory to practice both at the modeling and at the
programming levels.

Currently Moise implements a limited view of the many advanced theoretical ideas and possibilities
regarding MAS organizations, and so does our proposed ontology since they are both aligned. How-
ever, future work could expand and enrich both the modeling and the programming capabilities of these
techniques in order to better represent these rich and complex details regarding social aspects in the

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 173

development of agent systems. At the programming level, in JaCaMo, an approach to code commitment
patterns could be proposed, as well as new native constructs directly at the development platform. At the
modeling level, in our ontology, new concepts to represent commitments, debtors, creditors and contexts
of commitments could be created. Currently, this version of the ontology addresses models of MAS that
are aligned with JaCaMo. These models contain, for example, the initial and static representations of or-
ganizations for Moise which are applied to generate code for agent platforms. It is currently future work
to extend the modeling approach to address runtime characteristics of MAS, such as to represent and
monitor organizational properties for when the modeled system is in execution. This includes, for exam-
ple, Moise’s notion of an agent committing to achieve certain goals, a simpler notion than commitments
as described above.

Our MAS modeling methodology consists in creating subclasses, instances and relationships based on
the concepts and properties provided by the ontology, which can be done with any ontology editor. For
example, suppose that someone wants to develop a MAS to simulate a soccer scenario. The concept of
Agent would have subclasses to define its types, such as Player and Coach. Instances of Player would
represent concrete individuals of this type, such as playerl, player2, and so on. Specific types of Actions
for this MAS may be modeled as subclasses with the names Move, PassBall, and ChangeStrategy. Sec-
tion 4.1 provides a detailed example of how a MAS can be modeled in our ontology; it shows also how
inferences can be obtained from it.

Our ontology-based model integrates the dimensions of MAS at the semantic level, since they are al-
ready being integrated in the programming level, for example, in JaCaMo (Boissier et al., 2013). Agent
programmers benefit from an integration among these ontological levels with each programming dimen-
sion since the knowledge represented in one dimension can be reused in another, thus resulting in a
greater interoperability of agent platforms. This enables to convert MAS defined in ontologies to code
in specific agent platforms, and vice-versa. Also, a system designed with a higher degree of modularity
is easier to maintain, given that it separates different concerns yet enables relations between them. For
example, the characteristics of one dimension (e.g., environment) can be used to define properties on an-
other (e.g., organizational). In fact, it is often the case that the concepts of one level are related to another
but current MAS platforms do not allow for such relations to be explicitly represented. The classes and
properties in our ontology for MAS are modeled in three sub-ontologies, one for each dimension: agent,
environment and social organization. The connections among concepts in the ontology are encoded by
means of the object properties, which determine how instances are allowed to relate among each other.
Our tool uses instantiations of this ontology to support MAS programming in JaCaMo, as we show in
Section 5.

Model verification refers to the processes and techniques that the model developer uses to assure that
his or her model is correct and matches any agreed-upon specifications and assumptions (Carson, 2002).
Moreover, the ontology in our proposal can be explored with its available reasoning mechanisms to im-
plement model verification in the context of MAS. The literature reports that most practical approaches
for verification of MAS are done on code, and most of the work done on model checking within the
MAS research area is quite theoretical (Bordini et al., 2006). However, there are approaches that use
existing model checkers, typically to check properties of particular aspects of a MAS. While this has the
advantage of proving properties of the system that will be actually deployed, it is also often useful to
check properties during the system design. In fact, all the work on model checking for MAS is claimed
to be still in early stages so not really suitable for use on large and realistic systems (Bordini et al., 2006).

Considering this context, semantic reasoning may provide, for example, consistency checking and
inferences about the MAS specified in the ontology. The possibility to reason about the model fosters

174 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

the implementation of model checking features in the context of MAS. For example, when considering
only MAS organizations, it is possible to verify conflicts considering the existing norms, roles and mis-
sions. When an instantiation of MAS organization is combined with instantiated agents, it is possible
to verify other kind of inconsistencies integrating information from more than one dimension, such as
if the agents contain the required capabilities to achieve the existing organization goals. Similarly, other
verifications are possible when focusing on the interactions of instantiations of agents and environments,
i.e., verifying if agents’ actions are valid in such environment.

As previously explained, when integrating and matching information from more than one dimension, it
is possible to perform consistency checking through inferences obtained by reasoning with the ontology.
One example is to identify if the actions from agent’s dimension are available as operations provided by
the environment dimension. If there is an action from an agent that does not exist in the environment,
the invocation of such action in run time will result in an action failure. Thus, the verification of such
instantiated model characteristics at design time may prevent future errors to happen at the execution
time of the corresponding JaCaMo specified project. Similarly, it is possible to verify if the agents have
the capability to achieve the goals specified in the organization. Organization goals are assigned to agents
playing the organization roles, and an agent playing a specific role may not have plans to achieve goals
that the organization may assign to it. Reasoning can be applied also to verify consistency among the
norms in the organization. The combination of some norms can result in contradictions, for example,
when a prohibition occurs simultaneously with an obligation or permission. These contradictions can
appear when considering the missions of just one isolated role, or when combining the missions of two
or more roles.

4.1. Example of MAS modeled as an ontology instantiation

Consider a soccer game scenario to be modeled in terms of MAS in our proposed ontology. In this
scenario there are two different types of agents: players and coaches. Player agents can perform actions
such as moving in the soccer field, or passing the ball. The coach can send messages to player agents
in order to inform which roles they should adopt in each moment of the match. The environment is the
soccer field, where all agents are situated. Agents in the soccer field environment can perceive things
such as the ball position, and the match score. A team is an organization, composed of one coach and
several players. The players can play different roles, such as defender, striker, and captain (or leader). For
these roles, different missions may be assigned, such as defending, or attacking. This brief specification
addresses concepts of each one of the three MAS dimensions. Next we illustrate how to formalize it by
extending and instantiating our ontology.

Figures 2, 3, and 4 illustrate, respectively, examples from the agent, environment, and organization
dimensions. These examples show how to make subclass extensions and instantiations considering the
soccer scenario specification. In Fig. 2, we can see two subclasses of Agent created for this MAS: Player
and Coach. We included two instances of Players to reference individual agents (named player! and
player2). Each instance of an Agent’s subclass represents a concrete agent in the system, whereas its
type is specified by its class. Moreover, two types of Actions are defined as subclasses of the Action
concept: Move, and PassBall.

The environmental characteristics of our MAS are depicted by the subclasses and instances illustrated
in Fig. 3. For example, the subclass SoccerField represents a type of Space in which our agents are
situated. A concrete individual of this type is specified by the instance soccerFieldl. One type of Artifact
(i.e., resource) that exists in the environment for agents to interact with is defined by the subclass Ball,

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 175

Percept plage
Belief
‘ -
instancetof
as-belief |has-percept Player
sends-message subclasslof
Message I Agent
has-receiver Coach
has-plan has-action
p A Move
lag _subclassfof
Action
PassBall

Fig. 2. Soccer scenario example of subclass extension and instantiation in the agent dimension of the ontology for MAS.

Environment
has-space
Y
subclass-of has-artifact subclass-of
Ball » Artifact [« Space [« SoccerField

instance-of has-property “~_has-operation
Y
Observable A soccerField1
Operation
Property
subclass-of
[1
Score BallPosition
A
instance-of instamce-of

Fig. 3. Soccer scenario example of subclass extension and instantiation in the environment dimension of the ontology for MAS.

whereas balll is assigned as a valid instance of it. The subclasses Score and BallPosition illustrate types
of Observable Properties that resources may provide to agents, whereas an instantiation with values for
these properties (for beginning the MAS simulation) is represented by scorel and ballPositionl .

Figure 4 shows subclasses and instances to represent organization characteristics of this MAS. Two
subclasses specify types of Missions: Defending and Attacking. Instances of these subclasses, such as
attackingl and defendingI, define an assignment of that Mission type to an agent. The types of Roles are
given by the following three subclasses: Defender, Striker, and Captain. Instances of these subclasses of
Role (e.g., defenderl, defender2, strikerl, captainl) define which agents are playing the corresponding
roles. This example shows how to encode part of one possible strategy for modeling organizational

176 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

defender1

Defender
m extends-role
targets-role subclassiof defender2
Norm > Role < Striker
A instance-of
contains-role
Captain
targets-mission Group
instance-of
contains-subgoal
Y
has-goal
Mission > Goal
|subclass-of
Attacking Defending

instance-of instance-of

defending1

Fig. 4. Soccer scenario example of subclass extension and instantiation in the organization dimension of the ontology for MAS.

characteristics of agent systems. However, other strategies are possible and would result in different
designs and implementations for this scenario. The modeling requires also the creation of relationships
among the individuals, and the inclusion of some other axioms, which our example illustrates by using
object properties and restrictions over the subclasses.

Figure 5 illustrates in more detail how such example can be specified using the visualization pro-
vided by the Protégé ontology editor.* The left side of this image illustrates the subclasses hierarchy,
with emphasis on describing the Player concept. This part states the actions that players may exe-
cute, an environment where players are situated, and instances of this subclass. The right side of Fig. 5
presents information inferred by reasoners on this ontological instantiation. As we already explained,
the desired MAS is specified and modeled on top of the elements provided by the proposed ontol-
ogy. This is done by, for example, adding new classes, refining concepts, creating instances, asserting
properties, and so on. After using any ontology editor for modeling the MAS, the resulting OWL file
can be loaded into our tool that supports agent-oriented programming using a given ontology-based
specification.

The classes Coach and Player represent roles that individual agents can play. Thus, as shown in
Fig. 5, they were created as subclasses of Ag_Agent. This figure also illustrates some characteristics for
the Player concept such as players being able to execute the actions of passing the ball and moving (this
part is defined as a class restriction on the concept Player), and the role player has instances playerl
and player2. The environment where the agents are situated is specified using a relation that connects

4 Available open source at http://protege.stanford.edu/.

http://protege.stanford.edu/

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 177
=
Equivalent To ¢ X Object property asserions
v-® Attacking (1) mEnv_has-artifact balll
SubClass Of : i--‘--Qﬂttai:kingl @ Env_has-property ballPositionl
passBall Ag_Agent ¥ l-;:lllae(ﬂﬂ ®mEnv_has-property scorel
D Ag_Agent (Aga_sh:ns;ﬁf:,uas‘?g C BallPosition (1))
Coach T -4 ballPosition1 Data property assertions
Player EA_is-in value »Score (1)
Ag_Belisf soccerFieldl L. scorel Negative object property assertions
Ag_Goal ¥ SoccerField (1)
Ag_Message _ .. @ soccerField1 Negative data property assertions
— SubClass Of (Anonymous Ancestor) r
Ag_Plan ! ¥ Captain (1)
Y Env_Artifact w-dp captainl Property assertions: player1
I gall Members v @ Coach (1) - - —
i@ Env_Environment ®playerl -4 coachl Olnsct property assertion® & .
V- @ Env_ObservableProperty Defender (2) WEA can-perceive ballPositionl
Y iti #player2 @ defenderl : :
: BallPosition ®WEA_can-perceive scorel
Score & defender2 -ne -
Env_Operation Target for Key ~®Defending (1) WEA is-in soccerFieldl
v @ Env_Space - defendingl
- SoccerField o Player (2) Data property assertions
oOrg_Goal Disjoint With @ playerl
Org_Group @& player2 MNegative object propaity assertions
¥ Org_Mission Disjoint Union Of ¥ Striker (1)
: Attacking @ strikerl Negative data property assertions
Defending
Y@ Org_Norm Rules: DEEE
ObligationNorm -
PermissionNarm Rules o
i ProhibitionNorm Ag_Agent(?a), EA_is-in(?a, ?s), Env_has-property(?s, ?p) -> EA_can-perceive(?a, 7p)
v : Org_Role Env_has-property(?b, ?p), Env_has-space(?a, ?b) -> Env_has-property(?a, ?p)
g:?é::‘er BallPosition(?bp), SoccerField(?sf) -> Env_has-property(?sf, ?bp)
Striker Score(?s), SoccerField(?sf) -> Env_has-property(?sf, 7s)

Fig. 5. Subclasses of agent with some conditions (e.g., “SubClass of” restrictions for Player), instances, and rules in the ontology
together with properties that are asserted (in bold) and inferred (in dashed rectangles) by the semantic reasoning.

the Environment and Agent concepts: the property EA_is-in from Ag_Agent to Env_Space. Figure 5 also
shows that Rules® can be inherited from the base ontology, and new Rules can be added particularly
to a specific instantiation when defining a scenario (these are in bold). One general rule is that if an
agent A is in a space S, and this space S has an observable property P, then it can be inferred that the
agent A is able to perceive P if it chooses to do so. Rules created specifically for this scenario state
that observations of ball position and score take place in spaces defined as soccer fields. As can be
noted, it is possible to relate elements from any dimension (e.g., agent) with elements from another
(e.g., environment).

The right-hand side of Fig. 5 shows details about individuals and property assertions regarding the
modeled MAS soccer scenario. It illustrates the instantiation of concepts and properties that are asserted
or inferred for some individuals. The inferences obtained by the execution of semantic reasoning over
this example are shown in this figure inside dashed rectangles. It is asserted that the soccerFieldl instance
has an artifact called balll, and the previously defined rules allow the inference that this space contains
the observable properties of ball position and score. Since playerl is explicitly defined as an individual
of Player, reasoners can use class restrictions of Players to imply its location (soccerFieldl). Also, rules
support the inference of which observable properties this individual agent can perceive because of its
location.

SThe rules use an extension for OWL called SWRL (Semantic Web Rule Language).

178 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies
5. An ontology-based multi-agent system development tool

This Section shows how ontology instantiated models such as the one just presented can be applied
to generate MAS code for JaCaMo. We implemented a software tool that supports MAS programming
by extending the features available in Eclipse. Eclipse (Budinsky, 2004) is an open source software
development project that provides an Integrated Development Environment (IDE) in which a basic unit
of function, or a component, is called a plug-in. In this context, we propose a plug-in for Eclipse that
loads an instantiated ontology of MAS to provide code generation for JaCaMo.

The installation just requires the inclusion of the .jar file that corresponds to the plug-in in the directory
named “plugins” in the folder where Eclipse is located. The plug-in can be activated to appear visually in
the graphical interface of Eclipse by following these sequence: Window — Show View — Other... —
JaCaMo Ontology — Ok. Figure 6 shows how to follow these steps in order to activate the plug-in.
When it is enabled, the plug-in requests to be informed about the location of a file corresponding to an
instantiated ontology so it can be loaded.

The plug-in was designed to be used in the “JaCaMo Perspective” of Eclipse (or related perspectives,
such as Jason). The tool loads OWL ontologies and provides two model-based programming features
to generate MAS code: drag-and-drop and auto-complete from instantiated ontologies. It was developed
using the OWL API (Horridge and Bechhofer, 2011), which is an open source Java API (Application
Programming Interface) for creating, manipulating and serializing ontologies in the OWL format.

The drag-and-drop functionality from ontology to agent code can be seen in Fig. 7, which depicts the
Eclipse in Jason perspective. In the right side of the image, the developer can navigate in the ontology
concepts, instances and properties (from the new Eclipse component developed in this work). These

Window ‘ Help
New Window
Editor » type filter text
Apearance , [nple_agentas [J] Computer.java Eo s
Show View »| B Console Alt+Shift=Q, C 'i ‘S\I:ISTW'S
Perspective » | [©, Declaration Alt+Shift+Q, D &= General
Favigation , | % JaCaMo Navigator b b Debug
@ Javadoc Alt+Shift+Q, J > & Help
Preferences E’E Outline Alt+Shift+Q, O b [_j; JaCaMo
Sl Ty (== JaCaMo Ontology
(2l Problems Akeshiit=C, [JaCaMo Ontology |
4 & Tasks b = Java
i other.. Alt+Shift+Q, Q b M v Deowiing
7 > (= Plug-in Development
b (= Team
p = XML

Fig. 6. How to activate our plug-in for ontology-based MDE programming of MAS in Eclipse for JaCaMo.

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 179

Quick Access | B | & Java LQ, Resource

| & player.asl i3 | = 0 ‘ «J Ontology Viewer £2 ‘ = [m ‘ &
1 A~ 4 [@ Classes A | o=
z:. /* Initial beliefs and rules */ 4 (& Ag_Action |5
4 /* Initial goals */ —:j e _/“;,
5 24 change_strategy 0
6 !start. 29 conduct_ball s
7 &9 kick_ball_away 28
3 [T e £ kick_ball_to_goal @
J_’: 2J move 2
11© +!start: true <- & pass_ball !
12 2] substitution
‘-:’ I | pass_ball > (@ Ag_Agent
-~ %3 (® Ag_Belief
:”S {® Ag_Percept
I; > (8 Ag_Message
13 v ® Ag_Plan
(& Env_Environment v

Fig. 7. Ontology-based drag-and-drop in Eclipse for MAS coding — first shown in our demo paper (Freitas et al., 2015).

elements from the model on the right side can be dragged to the left side that represents the AgentSpeak
code of a Jason agent (in this case player.asl). As exemplified in Fig. 7, the programmer is dragging and
dropping the action pass_ball to be inserted in a plan of this type of agent. Similarly, our tool provides
the auto-complete feature from ontology to agent code, which is activated when the developer is typing
MAS code (or press the shortcut “ctrl+space”). Then, the available options based on the ontology are
presented to the programmer as suggestions. One example is when coding the plan’s context, which may
be composed of ontology-based queries (e.g., verifying if an individual belongs to a concept).

Our method to generate agent code from the ontology model can consider how each element can be
inserted into the different parts of the MAS under development. Specifically, elements from the ontol-
ogy can be dragged to generate code for each of the different parts of JaCaMo, such as Jason, CArtAgO,
Moise, or the JCM file that corresponds to the initial specification of a JaCaMo project. In other words,
the MAS code generation approach may consider the context, and the characteristics of what is be-
ing transformed into code (instance, concept, relationship, and so on). For example, when dropping
Org_ Roles within a plan’s body, the action to adopt these roles can be automatically created; when
Ag_Messages are dropped, the action to send the corresponding messages can be generated; when drop-
ping an Org_ObligationNorm, a plan could be created with a triggering event for the belief addition
generated by the perception of the obligation to commit to that obligation; and one last example is when
adding Env_Artifacts to an agent plan, then the programmer could be wishing to create, focus, or destroy
a CArtAgO artifact, and these options may be suggested. Our strategies to convert elements from the
proposed ontology model to MAS code exemplified above are depicted in Table 2. Moreover, while the
MAS is being programmed, the most up-to-date information on its code can serve as feedback to update
the instantiated ontology model to which it corresponds.

180 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

Table 2
Strategies to convert elements from our ontology model to MAS code
Ontology element Can be Generates MAS code regarding When dropped
dropped in changes
ontology in
Agent elements
Ag_Action plan body agent action inside the plan has-action
Ag_Goal agent code initial goal has-goal
Ag_Agent project folder agent file Ag_Agent
Ag_Message plan body send msg internal action sends-message,
Ag_Message
Ag_Belief agent code initial belief has-belief
Ag_Plan agent code initial plan has-plan
Environment elements
Env_Space plan body join workspace has-space
Env_ObservableProperty agent code new plan triggered by that percept has-plan
Env_Operation plan body agent action inside the plan using that operation has-action
Env_Artifact plan body focus/create/destroy -
Organization elements
Org_Goal agent code new plan to achieve that goal has-plan
Org_Role agent plan adopt role action has-action
Org_Group agent plan create/remove group has-action
Org_Mission agent plan commit/remove mission has-action
Org_ObligationNorm agent code plan to react to the percept of an obligation has-plan
Org_PermissionNorm agent code plan to react to the percept of a permission has-plan
Org_ProhibitionNorm agent code plan to react to the percept of a prohibition has-plan

6. Empirical evaluation

In order to evaluate the practical consequences of our research, we conducted a proof of concept ex-
periment with graduate computer science students enrolled in a course named “Multi-Agent Systems”.
Each participant evaluated the two parts of our proposal: (i) the use of the ontology for modeling differ-
ent MAS; and (ii) the development of code for JaCaMo using the ontology-based software tool. Their
experiences were surveyed by means of questionnaires covering each of these two tasks of MAS mod-
eling and programming through instantiating the proposed ontology and using the plug-in.

The required background expertise and profile of the participants is as follows: they should already
have prior knowledge on the topics of MAS and JaCaMo, they have to know how to use the Eclipse IDE
to code JaCaMo projects, and they must not have any previous information about the ontology presented
in this work until starting the experiment. The evaluation reported in this paper was conducted with 5
participants. Before starting the experiments, they received prior instructions about ontology and Protégé
in order to perform the activities with the minimum required knowledge. The new part introduced to them
was an overview of our MDE process: how to first model their projects in terms of our ontology, and then
how to load such instantiated ontology in the plug-in for Eclipse that supports JaCaMo programming
with the new code generation functionality. The results and analysis from evaluating the ontological
model and tool are reported as follows.

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 181
6.1. Model evaluation

To evaluate if our ontology model correctly abstracts the desired MAS characteristics, the participants
received the corresponding OWL file, and their first task was to instantiate the concepts and relationships
to generate the populated OWL file to be used later in the programming step. This part evaluates if
the MAS concepts defined in our ontology are correct, complete, and can be used for modeling and
specifications of MAS. To interact with the ontology, the Protégé ontology editor was used.

After modeling their MAS in the ontology, the participants received questionnaires composed of:
(i) affirmations to survey how much they agree based on a five-point Likert scale; and (ii) open questions
to extract their opinions. The options given in the Likert scale are the following: strongly agree, agree,
neither agree nor disagree, disagree and strongly disagree. The answers can be seen in the frequency
diagram shown in Fig. 8, which corresponds to the following affirmations:

— easy to specify: it was easy (i.e., practical and efficient) to specify the MAS in the ontology;

— easy to understand: it was easy to understand and explain the MAS through the set of concepts of
each dimension represented in the ontology;

— correctness: the ontology concepts in each dimension correctly specify any given MAS referring
to JaCaMo;

— completeness: the MAS specification in the ontology is complete since the ontology concepts cover
the major elements that can exist in MASs projected for JaCaMo;

— usefulness in modeling: the representation of MAS in an ontology was useful for modeling a
project for JaCaMo; and

— usefulness in programming: the representation of MAS in an ontology can be useful for program-
ming the a JaCaMo project.

Figure 8 shows that the affirmation most accepted is that the ontology is complete, followed by that it
is correct and useful in modeling. The affirmations with more disagreement are that it is easy to spec-
ify, easy to understand and useful in programming the MAS. The following advantages of using
the ontology were commented: (i) standardization of structures and concepts; (ii) more expressiveness
to represent further MAS concepts than with just the diagrams of Prometheus and Moise; (iii) just one
specification to model a complete MAS; (iv) avoid inconsistencies when naming the MAS elements
(especially in projects with several people); and (v) the relation between MAS components can become
clearer, such as among agents and actions. The disadvantages commented were that: (i) specify an on-
tology is not a trivial task (previous knowledge of the concepts is required); (ii) it can be more confusing

- 5 Strongly

Easy to specify

agree
Easy to understand .
4 Agree
Correctness 3 Neither

agree nor disagree

I:Iz Disagree
- 1 Strongly

disagree

Completeness

Usefulness in modeling

Usefulness in programming

1
0% 20% 40% 60% 80% 100%

Fig. 8. Frequency diagram to evaluate benefits of the proposed ontological approach for modeling MAS.

182 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

to specify the MAS in an ontology; and (iii) the Protégé can be complex to edit the ontology (however
other software could be used to improve productivity). The participants highlighted that the ontology is
more flexible to embrace the needs of MAS, and it groups in one place what other approaches represent
in several separate diagrams. Also, they found Prometheus and Moise diagrams more intuitive at first,
but without covering as many details about the MAS environment as this ontology does. The features
observed as improvements to this part of the work are to:

— (i) generate diagrams and code from the ontology, for example, a general system overview diagram
containing agents, perceptions and so on;

— (ii) unify or integrate the ontology and diagrams of agents and organizations; and

— (iii) define a diagram or language to represent MAS environments.

6.2. Tool evaluation

The participants received our Eclipse plug-in, where they had to load the ontology previously instanti-
ated by them and use the drag-and-drop and auto-complete features to develop agent code based on their
models. Then, the participants were surveyed by means of questionnaires to extract their perceptions
and opinions about the new tool. The answers can be seen in the frequency diagram depicted in Fig. 9,
which investigates the following affirmations:

— easy to understand: it was easy to understand the functioning of the software that uses the ontology
to help in programming;

— easy to use: it was easy to use the plug-in;

— efficiency: it was efficient (fast) to use the tool;

— easy to visualize: it was easy to visualize the ontology components in the way they appear in the
software interface;

— intuitive to use: it was intuitive how the ontology elements generate MAS code (drag-and-drop and
auto-complete);

— model-program approximation: the ontology and the software approximate and improve the tran-
sition between MAS specification/modeling and MAS programming;

— help in development: the ontology and the software help to develop code (MAS programming);

— avoid programming errors: programmers make less mistakes or inconsistencies when the code is
generated from the ontology; and

— usefulness in programming: an ontology for MAS and the proposed plug-in can be useful when
programming, as they bring developers a new functionality without impeding the use of other de-
velopment tools (in this case, Eclipse).

Figure 9 shows the participants pointing out that the tool is intuitive to use, easy to understand and
easy to visualize, followed by that it is useful in programming, easy to use and improves model-
program approximation. The participants also commented that the plug-in helps in code consistency
(e.g., it facilitates coding using the same terms), and it prevents developers from using terms outside the
ontology. This approach also provides an overview about the MAS to be visualized inside the program-
ming context, combined with features of dragging content from a model to MAS code.

More MAS code can be generated from this model, and the ontology can be more restrictive during
MAS coding (i.e., indicate errors or mismatches between model and code). Also, the Eclipse plug-in
could allow to edit the model (for example, to include new instances), which would discard the need of
using an ontology editing tool to edit the MAS model. These are suggestions to improve the proposed

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 183

Easy to understand

Easy to use
Efficiency - 5 Strongly
agree
Easy to visualise -4 Agree
Intuitive to use 3 Neither

agree nor disagree

I:Iz Disagree
.l Strongly

disagree

Model-program approximation
Help in development
Avoid programming errors

Usefulness in programming

L ! ! 1 |

!
T ! ! ! T 1

0% 20% 40% 60% 80% 100%

Fig. 9. Frequency diagram to evaluate benefits of the proposed tool.

such tool using the ontology model-based development in agent-oriented programming paradigms. Also,
the automatic update of the ontology when the MAS code changes is not currently implemented (it can
be cumbersome to manually synchronise model and code). Currently, the programmer has to manu-
ally change the ontology to reflect code changes and such ontology maintenance can be very laborious.
This can be solved by implementing features to highlight mismatches between MAS code and its corre-
sponding model, which is interesting to keep aligned (in other words, refactoring mechanisms to improve
synchronizations between model and code).

6.3. Comparison between Prometheus and the ontology-based approach

Our evaluation of the use of the proposed model and tool so far indicates that they are advantageous
for MAS development in various different ways. However, it is interesting to have results on compara-
tive experiments in which the participants perform the same task using both a previous approach and the
proposed one. While the previous experiments were more exploratory (to discover new things regard-
ing the research), the later ones focus on establishing comparisons and confirming characteristics from
predefined hypothesis about the proposal.

This comparative evaluation focuses on the comprehensive modeling of a same MAS example using
two different approaches: Prometheus (Padgham et al., 2005) and our ontology. In the first experiment
round that is reported in Sections 6.1 and 6.2, each participant modeled and developed a different MAS
application using solely the ontological approach and we surveyed their opinions. In the second round,
all participants have to develop the same MAS application model using two different approaches. In both
cases, the target MAS programming platform was JaCaMo (Boissier et al., 2013). The population that
joined these new rounds of experiments is composed of 5 participants. They were also enrolled in the
course named “Multi-Agent Systems”, but from a different semester than participants of the previous
experiments. They have declared their expertise and profile as follows:

— Multi-Agent Systems and JaCaMo: 3 participants only had their first contact with MAS in that
course, while 2 had already previously worked with MAS in practice. The same proportion applies
to the question of working with JaCaMo in practice.

184 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

— Ontology and Protégé: 3 participants had previous knowledge in ontology and Protégé before this
course, whereas 2 only had their first contact with ontologies during the experiment.
— Prometheus: their first contact with Prometheus was in the course, during the experiment.

Initially, they all received explanations and demonstrations of both approaches (ontology and
Prometheus). The tool for working with Prometheus models was the Eclipse plug-in called Prometheus
Design Tool, and the tool for the ontology approach was Protégé. They were guided through a learning
and an experiment scenario. The learning scenario was an adapted specification of the JaCaMo Hello
World,® and the experiment scenario was an adapted specification of the Gold Miners application.” For
the experiment, all participants used both approaches for modeling a specific MAS, but they were di-
vided into two groups. Each group started with a different methodology to avoid bias.

After modeling the same MAS using the two different approaches, the participants were given a 5-
point Likert scale for assessing the following assertions (with “X” being replaced by Prometheus or
Ontology in each affirmation):

— Al. To implement a system in JaCaMo, I find it easy to specify models in X.

— AZ2.1 could understand the elements provided by the X approach.

— A3. The characteristics of a JaCaMo MAS are correctly represented in the X approach.

— Ad4. The X approach is complete since it covers all the essential elements of JaCaMo systems.
— AS. I believe that it is useful to represent my JaCaMo system in the X approach.

— A6. The X approach provides good support for MAS programming in JaCaMo.

Our comparison of the two approaches under those criteria is summarised in Fig. 10. In general,
we observed better acceptance towards the ontology model, with the exception of assertion 2 (A2),
regarding how easy it is to understand the elements, and this may also be due to the fact that the ontology
was considered more complete (A4). It was considered more correctly aligned with JaCaMo (A3) and
therefore more useful for MAS modeling in this context (AS5). The participants’ opinions were more
positive for the ontology than Prometheus in their support for programming as well (A6).

In the last part of our questionnaires, we asked each participant to make free comments and sugges-
tions about any of the two approaches. For instance, we wanted to know if they thought that the meaning
of something was confusing or wrong for representing JaCaMo properties, and if something is missing

P P s Strongly
A4, . agree
0 0
.4 Agree
3 Neither
agree nor disagree
|:|2 Disagree
p
A6. .1 Strongly
O disagree

I
0% 20% 40% 60% 80% 100% D% 20% 40‘% 60% 80% 100%

r-‘Hr—'ﬁr-‘H
O Do

Fig. 10. Comparing Prometheus (P) with the ontological approach (O).

60btained from http://jacamo.sourceforge.net/tutorial/hello-world/.
7Obtained from https://multiagentcontest.org/2007/.

http://jacamo.sourceforge.net/tutorial/hello-world/
https://multiagentcontest.org/2007/

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 185

in order to fully specify MAS as JaCaMo projects. We obtained from one of the participants the opinion
that Prometheus is more generic and does not cover some JaCaMo aspects, and that the ontology covers
well the properties of JaCaMo, but, in some cases, its specification may be more laborious.

Another participant observed that the ontology serves best the project needs than Prometheus, since it
is possible to better represent in the ontology what is intended to be implemented in JaCaMo.

A participant pointed out that the use of Prometheus is more natural because it is a visual tool, with
easily defined flows, however it does not provide all the necessary functionality to define a complete
MAS to be later developed in JaCaMo. The ontology approach was claimed to be more complete, but
with a slower learning curve. According to another participant, the modeling in Prometheus is more intu-
itive because it has a graphical interface with drag-and-drop. However, the approach that uses ontology
through Protégé provides more options, so they were able to do a much more complete modeling. It was
suggested that, after finishing the ontological modeling, it would be interesting to export it as diagrams.

This subsection discussed the results for the experiments comparing our approach with Prometheus for
modeling MAS. An extended comparative analysis between the models built in each of the approaches,
and comparisons of each approach for other stages of AOSE is planned as future work. Although the re-
sults reported here are limited to the given population and applications that took place in the experiments,
they help to indicate some interesting advantages regarding the approach proposed in this paper.

7. Final remarks

Although ontologies for MAS have been considered in many ways, few agent-based systems devel-
opment platforms integrate ontology techniques. The use of ontologies for MAS modeling and devel-
opment is emerging; however, current ontologies for MAS only cover parts of the whole picture, such
as the environment or the organization. On the other hand, there are models and MDE approaches ad-
dressing the overall MAS development, but without using ontology, semantic reasoning or employing
the models during the programming step. This context led to our proposal addressing the use of ontology
in model-based design of MAS. Our previous research addressed MAS with ontologies, e.g. the inital
idea of integrating ontologies in MAS platforms (Freitas et al., 2015); and, more specifically, the role
of ontology within AOSE (Freitas et al., 2014). We also investigated the use of ontologies as semantic
representation for agent plans (Freitas et al., 2014). Then, more aligned with the main topic of this paper,
we presented a demonstration® of our ontology-based approach and tool for engineering MAS (Freitas
et al., 2015). Next, one of our studies discusses the implications of coding in JaCaMo a complex MAS
modeled in Prometheus (Freitas et al., 2016), thus assessing the combined used of Prometheus for mod-
eling and JaCaMo for programming. We also made contributions to the complementary area of providing
an infrastructure for MAS to interact with ontologies (Freitas et al., 2015) and we demonstrated its use
in a scenario where agents argue about task reallocation based on ontologies (Panisson et al., 2015).

Based on that previous work, we presented in this paper a MAS modeling methodology based on
ontologies and a development tool based on models instantiated through such a methodology. The mo-
tivations for this research reside in the difficulty to design, model, integrate and develop MAS, which
normally require the inclusion of several system’s components often approached from different angles
and formalisms. For example, the JaCaMo (Boissier et al., 2013) framework for MAS programming
combines three separate technologies: Jason (Bordini et al., 2007) for coding autonomous agents in
an AgentSpeak dialect, CArtAgO (Ricci et al., 2006) for programming the environment as artifacts in

8 A video of this demonstration is available at https://youtu.be/Lt5ZVG1cgBQ.

https://youtu.be/Lt5ZVG1cgBQ

186 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

Java, and Moise (Hiibner et al., 2010) for specifying MAS organizations in XML. These distinct starting
points to code the MAS make it desirable a single model combining all MAS dimensions, that could be
used to give initial support to code generation for all those platforms.

We claim that our MAS modeling and development approaches increase the flexibility and ease the
engineering of such systems. First, the MAS is modeled from the start in a single integrated formalism,
and the ontology allows the designer to connect and reuse knowledge of one dimension into others and
also across different applications, improving both system development as well as MAS interoperabil-
ity. For example, the characteristics of a MAS dimension (e.g., environment) could be used to define
properties of another (e.g., organizational). Our approach also enables the conversion of MAS defined
in ontologies to programming code in specific agent platforms while remaining flexible enough to ac-
commodate the needs of MAS designers. Based on such modeling approach, we elaborated a tool as a
plug-in for Eclipse that uses MDE to support MAS programming according to its ontology design.

This research opens possibilities of applying the proposed ontology in many other ways. In terms of
MAS design, such ontology model provides a global conceptual view which in combination with MDE
can result in tools, for example, to verify model consistency, perform inferences with semantic rea-
soners, query instantiated models, develop/visualize MAS specifications in ontologies, and support for
programming. As result, developers obtain new features for developing complex software systems with
an infrastructure that combines and applies modeling, software and knowledge engineering principles.
For example, MDE can obtain unambiguous definitions from meta-models formally defined in ontology
languages, and reasoners can validate meta-models automatically or generate MAS code from models,
all of which contribute to more principled ways to develop MAS. As future work, we plan to investigate
these other possibilities of applications that can be derived from this research.

As result of our work in the areas of MDE, ontology and MAS, the first practical evaluations of
our research are indicating that the use of ontology facilitates the modeling of MAS, supports agent
programming and provides a basis for reasoning about the modeled system. Our experiments help to
highlight advantages as well as limitations and possibilities for improvements in the current state of
the proposed technique. Thus, the initial evaluations reported here provide sufficient evidence (although
in a simulated laboratory environment) to suggest that our approach is feasible for representing useful
models in the desired domain of agent-based software systems. It is currently ongoing work in this
research to make more comparisons about the processes of modeling, programming and verification
with the standard approach versus our new one, as well as an analysis of the resulting models and codes.

One could also consider the possibility of applying UML to substitute the use of OWL to describe a
given content or domain of knowledge. It would be also the case that one of these alternative choices
brings different sets of tools to work with, with more advantages in some aspects, however there would
also be drawbacks in other parts. This work points out our investigation considering the use of ontology
as an alternative. Studies to compare these different paradigms would be interesting for the communities
working on them, and specially when considering the application context of this work, which is to
support AOSE. As we already mentioned in this paper, some authors argue that UML, in its original
form, provides insufficient support for modeling MAS (da Silva and de Lucena, 2003). However, it
might be the case that some new extension of UML may enable its suitable application for AOSE.

This work emphasizes an ontology for modeling agents, the environment in which they operate, and
the organization to support the coordination of autonomous agents. Many researchers in MAS believe
that interactions among the agents are crucial issues to be considered when developing such systems.
Interaction includes communication, intentions, obligations, and commitments. Although this topic is
being conceptually discussed for quite some time (Singh, 1999), only in recent work (Zatelli et al.,

A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies 187

2016) JaCaMo has been extended in order to provide such features at the programming level by means
of a new interaction dimension. Thus, the modeling of interactions to extend our ontology would be
an interesting future work to explore. This has not been fully addressed so far given how recent such
developments are in the context of MAS projects in IDEs for JaCaMo.

References

Atkinson, C., Gutheil, M. & Kiko, K. (2006). On the relationship of ontologies and models. In Proceedings of the 2nd Workshop
on Meta-Modelling (Vol. 96, pp. 47-60).

Atkinson, C. & Kiihne, T. (2003). Model-driven development: A metamodeling foundation. IEEE Softw., 20(5), 36—41. doi:10.
1109/MS.2003.1231149.

Baader, F., Horrocks, 1. & Sattler, U. (2004). Description logics. In Handbook on Ontologies (pp. 3-28). Springer. doi:10.1007/
978-3-540-92673-3_1.

Bayardo, R.J. Jr., Bohrer, W., Brice, R., Cichocki, A., Fowler, J., Helal, A., Kashyap, V., Ksiezyk, T., Martin, G., Nodine, M.,
Rashid, M., Rusinkiewicz, M., Shea, R., Unnikrishnan, C., Unruh, A. & Woelk, D. (1997). InfoSleuth: Agent-based semantic
integration of information in open and dynamic environments. ACM SIGMOD International Conference on Management of
Data, 26(2), 195-206. doi:10.1145/253262.253294.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, 1., McGuinness, D.L., Patel-Schneider, P.F. & Stein, L.A. (2004). OWL
web ontology language reference. Technical report, W3C. http://www.w3.org/TR/owl-ref/.

Bézivin, J. (2006). Model driven engineering: An emerging technical space. In Generative and Transformational Techniques in
Software Engineering (pp. 36-64). Springer. doi:10.1007/11877028_2.

Boissier, O., Bordini, R.H., Hiibner, J., Ricci, A. & Santi, A. (2013). Multi-agent oriented programming with JaCaMo. Science
of Computer Programming, 78(6), 747-761. doi:10.1016/j.scico.2011.10.004.

Bordini, R.H., Dastani, M. & Winikoff, M. (2006). Current issues in multi-agent systems development. In G.M.P. O’Hare,
A. Ricci, M.J. O’Grady and O. Dikenelli (Eds.), Engineering Societies in the Agents World (Vol. 4457, pp. 38—61). Springer.
doi:10.1007/978-3-540-75524-1_3.

Bordini, R.H., Hiibner, J.F. & Wooldridge, M. (2007). Programming Multi-Agent Systems in AgentSpeak Using Jason. John
Wiley & Sons. doi:10.1002/9780470061848.

Budinsky, F. (2004). Eclipse Modeling Framework: A Developers Guide. Addison-Wesley.

Carson, J.S. (2002). Model verification and validation. In Proceedings of the 2002 Winter Simulation Conference (Vol. 1,
pp- 52-58). doi:10.1109/WSC.2002.1172868.

da Silva, V.T. & de Lucena, C.J. (2003). MAS-ML: A multi-agent system modeling language. In Companion of the 18th Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications (pp. 304-305). ACM.
doi:10.1145/949344.949424.

Freitas, A., Bordini, R.H., Meneguzzi, F. & Vieira, R. (2015). Towards integrating ontologies in multi-agent programming plat-
forms. In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (Vol. 3, pp. 225-
226). doi:10.1109/WI-1AT.2015.207.

Freitas, A., Cardoso, R.C., Vieira, R. & Bordini, R.H. (2016). Limitations and divergences in approaches for agent-oriented
modelling and programming. In M. Baldoni, J.P. Miiller, I. Nunes and R. Zalila-Wenkstern (Eds.), Engineering Multi-Agent
Systems (pp. 88—103).

Freitas, A., Hilgert, L., Marczak, S., Meneguzzi, F., Bordini, R.H. & Vieira, R. (2015). A multi-agent systems engineering tool
based on ontologies. In 34th International Conference on Conceptual Modeling. Springer.

Freitas, A., Panisson, A.R., Hilgert, L., Meneguzzi, F., Vieira, R. & Bordini, R.H. (2015). Integrating ontologies with multi-
agent systems through CArtAgO artifacts. In IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(pp. 143-150). doi:10.1109/WI-IAT.2015.116.

Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R. & Bordini, R.H. (2014). Applying ontologies and agent tech-
nologies to generate ambient intelligence applications. In Joint Proceedings Collaborative Agents — Research & Develop-
ment, CARE for Intelligent Mobile Services & Agents, Virtual Societies and Analytics (pp. 22-33). doi:10.1007/978-3-662-
46241-6_3.

Freitas, A., Schmidt, D., Panisson, A., Meneguzzi, F., Vieira, R. & Bordini, R.H. (2014). Semantic representations of agent
plans and planning problem domains. In F. Dalpiaz, J. Dix and M.B. van Riemsdijk (Eds.), Engineering Multi-Agent Systems
(Vol. 8758, pp. 351-366). Springer. doi:10.1007/978-3-319-14484-9 _18.

Gascuefia, J.M., Navarro, E. & Ferndndez-Caballero, A. (2012). Model-driven engineering techniques for the development of
multi-agent systems. Engineering Applications of Artificial Intelligence, 25(1), 159-173. doi:10.1016/j.engappai.2011.08.
008.

http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1109/MS.2003.1231149
http://dx.doi.org/10.1007/978-3-540-92673-3_1
http://dx.doi.org/10.1007/978-3-540-92673-3_1
http://dx.doi.org/10.1145/253262.253294
http://www.w3.org/TR/owl-ref/
http://dx.doi.org/10.1007/11877028_2
http://dx.doi.org/10.1016/j.scico.2011.10.004
http://dx.doi.org/10.1007/978-3-540-75524-1_3
http://dx.doi.org/10.1002/9780470061848
http://dx.doi.org/10.1109/WSC.2002.1172868
http://dx.doi.org/10.1145/949344.949424
http://dx.doi.org/10.1109/WI-IAT.2015.207
http://dx.doi.org/10.1109/WI-IAT.2015.116
http://dx.doi.org/10.1007/978-3-662-46241-6_3
http://dx.doi.org/10.1007/978-3-662-46241-6_3
http://dx.doi.org/10.1007/978-3-319-14484-9_18
http://dx.doi.org/10.1016/j.engappai.2011.08.008
http://dx.doi.org/10.1016/j.engappai.2011.08.008

188 A. Freitas et al. / Model-driven engineering of multi-agent systems based on ontologies

Gruber, T.R. (1993). A translation approach to portable ontology specifications. Knowl. Acquis., 5(2), 199-220. doi:10.1006/
knac.1993.1008.

Hadzic, M., Wongthongtham, P., Dillon, T. & Chang, E. (2009). Ontology-Based Multi-Agent Systems. Springer. doi:10.1007/
978-3-642-01904-3.

Horridge, M. & Bechhofer, S. (2011). The OWL API: A Java API for OWL ontologies. Semant. Web, 2(1), 11-21. doi:10.3233/
SW-2011-0025.

Hiibner, J.E,, Boissier, O., Kitio, R. & Ricci, A. (2010). Instrumenting multi-agent organisations with organisational artifacts
and agents. Autonomous Agents and Multi-Agent Systems, 20(3), 369-400. doi:10.1007/s10458-009-9084-y.

Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W., Schwinger, W. & Wimmer, M. (2006).
Lifting metamodels to ontologies: A step to the semantic integration of modeling languages. Model Driven Engineering
Languages and Systems, 4199, 528-542. doi:10.1007/11880240_37.

Klapiscak, T. & Bordini, R.H. (2008). JASDL: A practical programming approach combining agent and semantic web tech-
nologies. In The 6th International Workshop on Declarative Agent Languages and Technologies (Vol. 5397, pp. 91-110).
Springer. doi:10.1007/978-3-540-93920-7_17.

Mascardi, V., Ancona, D., Barbieri, M., Bordini, R.H. & Ricci, A. (2014). CooL-AgentSpeak: Endowing AgentSpeak-DL
agents with plan exchange and ontology services. Web Intelligence and Agent Systems, 12(1), 83—107. doi:10.3233/WIA-
140287.

Moreira, A.F,, Vieira, R., Bordini, R.H. & Hiibner, J.F. (2005). Agent-oriented programming with underlying ontological rea-
soning. In Proceedings of the 3rd International Workshop on Declarative Agent Languages and Technologies (pp. 155-170).
Berlin, Heidelberg: Springer. doi:10.1007/11691792_10.

Okuyama, FY., Vieira, R., Bordini, R.H. & da Rocha Costa, A.C. (2006). An ontology for defining environments within multi-
agent simulations. In Workshop on Ontologies and Metamodeling in Software and Data Engineering.

Padgham, L., Thangarajah, J. & Winikoff, M. (2005). Tool support for agent development using the Prometheus methodology.
In Fifth International Conference on Quality Software (pp. 383-388). doi:10.1109/QSIC.2005.66.

Padgham, L. & Winikoff, M. (2002). Prometheus: A methodology for developing intelligent agents. In F. Giunchiglia, J. Odell
and G. WeiB (Eds.), Agent-Oriented Software Engineering III (Vol. 2585, pp. 174-185). Springer. doi:10.1007/3-540-
36540-0_14.

Panisson, A.R., Freitas, A., Schmidt, D., Hilgert, L., Meneguzzi, F., Vieira, R. & Bordini, R.H. (2015). Arguing about task
reallocation using ontological information in multi-agent systems. In /2th International Workshop on Argumentation in
Multiagent Systems.

Pavén, J., Gémez-Sanz, J. & Fuentes, R. (2006). Model driven development of multi-agent systems. In A. Rensink and
J. Warmer (Eds.), Model Driven Architecture — Foundations and Applications (Vol. 4066, pp. 284-298). Berlin, Heidel-
berg: Springer. doi:10.1007/11787044_22.

Ricci, A., Viroli, M. & Omicini, A. (2006). CArtAgO: An infrastructure for engineering computational environments in MAS.
In D. Weyns, H.V.D. Parunak and F. Michel (Eds.), 3rd International Workshop Environments for Multi-Agent Systems
(pp. 102-119).

Roebuck, K. (2012). Model-Driven Architecture (MDA): High-Impact Strategies — What You Need to Know: Definitions, Adop-
tions, Impact, Benefits, Maturity, Vendors. Emereo Publishing.

Selic, B. (2003). The pragmatics of model-driven development. IEEE Software, 20(5), 19-25. doi:10.1109/MS.2003.1231146.

Singh, M.P. (1999). An ontology for commitments in multiagent systems: Toward a unification of normative concepts. Artificial
Intelligence and Law, 7(1), 97-113. doi:10.1023/A:1008319631231.

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A. & Katz, Y. (2007). Pellet: A practical OWL-DL reasoner. Web Semant., 5(2),
51-53. doi:10.1016/j.websem.2007.03.004.

Staab, S., Walter, T., Groner, G. & Parreiras, F. (2010). Model driven engineering with ontology technologies. In U. Abmann,
A. Bartho and C. Wende (Eds.), Reasoning Web. Semantic Technologies for Software Engineering (Vol. 6325, pp. 62-98).
Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-15543-7_3.

Tran, Q.-N.N. & Low, G. (2008). MOBMAS: A methodology for ontology-based multi-agent systems development. Inf. Softw.
Technol., 50(7-8), 697-722. doi:10.1016/j.infsof.2007.07.005.

Uez, D.M. & Hiibner, J.F. (2014). Environments and organizations in multi-agent systems: From modelling to code. In 2nd
International Workshop on Engineering Multi-Agent Systems (pp. 181-203). doi:10.1007/978-3-319-14484-9_10.

Zarafin, A.-M. (2012). Semantic description of multi-agent organizations. Master’s thesis, Automatic Control and Computers
Faculty, Computer Science and Engineering Department, University Politehnica of Bucharest.

Zatelli, M.R. & Hiibner, J.F. (2014). The interaction as an integration component for the JaCaMo platform. In 2nd International
Workshop on Engineering Multi-Agent Systems (pp. 431-450). doi:10.1007/978-3-319-14484-9_22.

Zatelli, M.R., Ricci, A. & Hiibner, J.F. (2016). Integrating interaction with agents, environment, and organisation in JaCaMo.
International Journal of Agent-Oriented Software Engineering, 5(2-3), 266-302. doi:10.1504/IJAOSE.2016.080889.

http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1006/knac.1993.1008
http://dx.doi.org/10.1007/978-3-642-01904-3
http://dx.doi.org/10.1007/978-3-642-01904-3
http://dx.doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.3233/SW-2011-0025
http://dx.doi.org/10.1007/s10458-009-9084-y
http://dx.doi.org/10.1007/11880240_37
http://dx.doi.org/10.1007/978-3-540-93920-7_7
http://dx.doi.org/10.3233/WIA-140287
http://dx.doi.org/10.3233/WIA-140287
http://dx.doi.org/10.1007/11691792_10
http://dx.doi.org/10.1109/QSIC.2005.66
http://dx.doi.org/10.1007/3-540-36540-0_14
http://dx.doi.org/10.1007/3-540-36540-0_14
http://dx.doi.org/10.1007/11787044_22
http://dx.doi.org/10.1109/MS.2003.1231146
http://dx.doi.org/10.1023/A:1008319631231
http://dx.doi.org/10.1016/j.websem.2007.03.004
http://dx.doi.org/10.1007/978-3-642-15543-7_3
http://dx.doi.org/10.1016/j.infsof.2007.07.005
http://dx.doi.org/10.1007/978-3-319-14484-9_10
http://dx.doi.org/10.1007/978-3-319-14484-9_22
http://dx.doi.org/10.1504/IJAOSE.2016.080889

	Introduction
	Background
	Multi-agent systems
	Model-driven engineering
	Ontologies and multi-agent systems

	Literature review
	Model-driven engineering and multi-agent systems
	Model-driven engineering and ontologies
	Multi-agent systems and ontologies

	An ontology modeling approach for engineering multi-agent systems
	Example of MAS modeled as an ontology instantiation

	An ontology-based multi-agent system development tool
	Empirical evaluation
	Model evaluation
	Tool evaluation
	Comparison between Prometheus and the ontology-based approach

	Final remarks
	References

