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Abstract

Automated planning is an important capability to have
in multi-agent systems. Extensive research has been
done for single-agents, but so far it has not been fully
explored in multi-agent systems mainly because of the
computational costs of multi-agent planners. With the
increasing availability of distributed systems, and more
recently multi-core processors, there have been several
novel multi-agent planning algorithms developed, such
as the MAP-POP algorithm, which in this work we inte-
grate with the JaCaMo multi-agent system framework.
Our work provides off-line multi-agent planning capa-
bilities as part of a multi-agent system development
framework that supports the development of systems
for complex multi-agent problems. In summary, our ap-
proach is to provide to developers an initial multi-agent
system implementation for the target scenario, based on
solutions found by the MAP-POP multi-agent planner,
and on which the developer can work further towards a
fully-fledged multi-agent system.

1 Introduction
In this paper, we provide an approach to combine off-
line Multi-Agent Planning (MAP) algorithms with a Multi-
Agent Systems (MAS) platform. Our work serves two pur-
poses: it provides an execution stage for off-line MAP, and
it provides an initial MAS on which developers can further
work. This process is done with a translator, which receives
as input the problem instances and the solution found by the
multi-agent planner and generates a MAS program as out-
put.

Automated planning is an interesting and desirable ca-
pability to have in intelligent agents and MAS, which so
far has not been fully explored because of the computa-
tional costs of MAP algorithms (Jonsson and Rovatsos 2011;
Crosby, Jonsson, and Rovatsos 2014). Recent algorithms
have managed to improve performance, which was one of
the main incentives for pursuing this topic.

Although there is an increase in interest in theoretical re-
search on multi-agent planning, as evidenced in (Witwicki
and Durfee 2011; Jr. and Durfee 2011; Planken, de Weerdt,
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and Witteveen 2010), current implemented multi-agent plan-
ning algorithms and planners are mostly application specific,
such as in (Mao et al. 2007; van Leeuwen and Witteveen
2009).

A distributed multi-agent planning problem involves the
development and execution of joint plans through cooper-
ation (agents on the same team) and competition (agents
on opposing teams) without centralised control. These off-
line planning algorithms normally stop at the planning stage,
providing a solution but with no means of executing it.

The term multi-agent planning has been used in a variety
of contexts through the years, and as such, its concept can
mean widely different things. For the purposes of this paper,
we use the multi-agent planning definition found in (Durfee
and Zilberstein 2013), which states that the planning pro-
cess itself is multi-agent (i.e. multiple agents cooperatively
generate plans), and the solution can be distributed across
and acted upon by multiple agents. In other words, multi-
agent planning by multiple agents and multi-agent planning
for multiple agents.

We use the Multi-Agent Planning based on Partial-Order
Planning (MAP-POP) (Lerma 2011; Torreño, Onaindia, and
Sapena 2014a; 2014b; Sapena, Onaindia, and Torreño 2015)
as an example of a multi-agent planner, and provide a basic
grammar for it. This grammar is then used in the translation
algorithms that we describe. These algorithms can be eas-
ily adapted to work with the grammars of other multi-agent
planners.

For the MAS development platform we use the JaCaMo
framework (Boissier et al. 2011). JaCaMo is composed of
three technologies, each representing a different abstraction
level that is required for the development of sophisticated
MAS. JaCaMo is the combination of Jason, CArtAgO, and
Moise, each of these technologies are responsible for a dif-
ferent programming dimension. Jason is used for program-
ming the agent level, CArtAgO is responsible for the envi-
ronment level, and Moise for the organisation level.

The translator takes as input the problem instances and
the solution provided by a multi-agent planner, MAP-POP in
this paper. As output, the translator generates a coordination
scheme in Moise, followed by the respective agent plans in
Jason, and CArtAgO artefacts for organisation control and
environment representation. All of these come together to
form an initial multi-agent system in JaCaMo.
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Our goal with this work was to check if current general-
purpose MAP algorithms could be easily integrated with a
MAS framework in order to execute the solution, and if the
resulting MAS in JaCaMo was complex enough to be of any
help to developers. Our results are encouraging, the coor-
dination aspect that is needed for the distributed planning
stages of a MAP algorithm is a natural fit for the specifica-
tion of a Moise organisation. The plans generated in Jason
are parsed from the solution presented by each algorithm,
and generally were a simple conversion from a step to a plan,
maintaining its pre-conditions and effects.

The rest of this paper is structured as follows. In Section 2
we cover the background. Section 3 provides some of the
related work. In Section 4 we describe the grammar that we
made for the input and the solution of MAP-POP and the
translation algorithms. Section 5 presents two case studies
and we conclude in Section 6.

2 Background
It is common for MAP algorithms to use and improve upon
single-agent planning techniques, as single-agent planning
has been extensively researched over the years and has also
been the focus of several International Planning Competi-
tions (IPC). As a consequence, single-agent planners gener-
ally have an excellent performance. Usually, in distributed
MAP algorithms, agents plan locally using adaptations of
single-agent planners, which means that at some point they
will need to exchange information to be able to arrive at
a global solution plan. Therefore in order to properly ex-
change information the agents need some kind of coordina-
tion mechanism.

The input of a MAP algorithm refers to instances of
the formalism chosen to represent MAP planning problems.
Similarly to single-agent planners, problem formalisms have
also been extensively researched over the years. PDDL
for example has been the standard formalism to represent
single-agent problems for quite some time, and it can be eas-
ily adapted to comply with the needs that arise when dealing
with multi-agent planning problems. The output of a MAP
algorithm is the solution it generates, and contrary to the in-
put, the output does not have any standard representation.
However, as we are dealing with multi-agent plans that can
cause interference with each other, coordination constraints
are needed to guarantee that during the execution stage the
partial plans will be executed in the correct order so as to
achieve the global goal.

The MAP-POP (Lerma 2011) planner builds upon the
concept of refinement planning, where agents propose suc-
cessive refinements to a base plan until a solution is ob-
tained. It uses the PDDL 3.1 formalism with some ad-hoc
adaptations to make it work with their multi-agent planner.
MAP-POP is based on partial-order planning, establishing
partial order relations between the actions in the plan.

The MAP-POP algorithm starts with an initial communi-
cation stage in which the agents exchange some information
on the planning domain, in order to generate data structures
that will be useful in the subsequent planning process. The
next step comprises of two different stages that are inter-
leaved, they repeat themselves until a solution plan is found:

• an internal planning process, through which the agents
refine the current base plan individually with an internal
POP system. In order to guide the search the SUM heuris-
tic is applied, it is based on the sum of the costs of the
open goals found in the initial communication stage.

• and a coordination process, that allows agents to ex-
change the refinement plans that were generated in the
previous stage and to select the next base plan, using the
SUM heuristic to estimate the quality of a refinement. A
leadership baton is passed among the agents, following a
round-robin order. If the current base plan does not have
any open goals it is a solution, and if not the baton agent
selects the next most costly open goal to be solved. With a
new subgoal to be solved, the next internal planning stage
starts.

According to (Wooldridge 2002), an agent is a computer
system that is capable of autonomous action in the environ-
ment that it is situated in order to meet its objectives. In
other words, agents receive perceptions through sensors in
the environment, and respond to these events with actions
that affect the environment. Systems that require the use of
the Agent Model will seldom need only a single-agent. Al-
beit obvious, a MAS then is composed of multiple agents.

Many agent-oriented programming languages have
been developed over the years. Some examples of
these include Jason (Bordini, Wooldridge, and Hübner
2007), JACK (Busetta et al. 1999), 2APL (Dastani
2008), GOAL (Hindriks et al. 2000), and more recently
ALOO (Ricci 2014).

Several studies indicate that Jason has an excellent per-
formance when compared with other agent-oriented pro-
gramming languages. For example, Jason is included in a
qualitative comparison of features alongside with Erlang
and Java (Jordan et al. 2011); in a universal criteria cata-
log for agent development artefacts (Braubach, Pokahr, and
Lamersdorf 2008); in a quantitative comparison between Ja-
son and two actor-oriented programming languages (Erlang
and Scala) using a communication benchmark (Cardoso,
Hübner, and Bordini 2013); and finally a performance eval-
uation of several benchmarks between agent programming
languages (Jason, 2APL, and GOAL) and actor program-
ming languages (Erlang, Akka, and ActorFoundry) (Car-
doso et al. 2013). In those cases where performance was
considered, Jason typically showed excellent results.

A JaCaMo1 (Boissier et al. 2011) MAS (i.e. a software
system programmed in JaCaMo) is defined by an agent or-
ganisation programmed in Moise, responsible for the organ-
isation of autonomous agents programmed in Jason. Those
agents work in a shared distributed artefact-based environ-
ment programmed in CArtAgO. JaCaMo integrates these
three platforms by defining a semantic link among concepts
of the different programming dimensions (agent, environ-
ment, and organisation) at the meta-model and programming
levels, in order to obtain a uniform and consistent program-
ming model that simplifies the combination of those dimen-
sions for the development of MAS.

1http://jacamo.sourceforge.net/.
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Jason (Bordini, Wooldridge, and Hübner 2007) focuses on
the agent programming level, it is a programming language
for the development of MAS based on the BDI (Belief-
Desire-Intention) model, inspired by the AgentSpeak lan-
guage (Rao 1996). In Jason an agent is an entity composed
of a set of beliefs — agent’s current state and knowledge
about the environment in which it is situated; a set of goals
— tasks the agent has to achieve; a set of intentions —
tasks the agent is committed to achieve; and a set of plans
— courses of actions triggered by events (can be related to
changes in either the agent’s belief base or its goals).

CArtAgO (Ricci et al. 2009) is a framework and in-
frastructure for environment programming and execution in
multi-agent systems. In CArtAgO the environment is used as
a first-class abstraction for designing MAS, a computational
layer encapsulating functionalities and services that agents
can explore at runtime. These software environments can
be designed and programmed as a dynamic set of computa-
tional entities called artefacts, that are collected into several
workspaces, possibly distributed among various nodes of a
network.

Finally, the Moise (Hübner, Sichman, and Boissier 2007)
model is used to program the organisational dimension.
This approach includes an organisation modelling language,
an organisation management infrastructure, and support for
organisation-based reasoning mechanisms at the agent level.
The organisation model is divided into three layers: the
structural specification, where the groups, roles, and links
between roles are specified; the functional specification,
where the schemas are specified, containing a group of goals
and missions, along with information on which goals will be
executed in parallel and which will be executed in sequence;
and the normative specification, where obligations and per-
missions towards certain missions are assigned to certain
roles.

3 Related Work
A survey (Meneguzzi and De Silva 2013) presents a collec-
tion of recent techniques used to integrate automated plan-
ning in BDI-based agent-oriented programming languages.
It focuses mostly on efforts to generate new plans at runtime,
while as with our work we translate the output of MAP al-
gorithms into a MAS that is then able to execute the solu-
tion plan, i.e. the MAP algorithms are not involved during
runtime. There are at least two other surveys on multi-agent
planning, they can be found in (Weerdt, Mors, and Witteveen
2005; de Weerdt and Clement 2009).

In (Mao et al. 2007), decommitment penalties and a Vick-
rey auction mechanism are proposed to solve a multi-agent
planning problem in the context of an airport — deicing
and anti-icing aircrafts during winter — where the agents
are self-interested and often have conflicting interests. The
experiments showed that the former ensures a fairer distri-
bution of delay, while the latter respects the preferences of
the individual agents. Both mechanisms outperformed a first
come, first served mechanism, but were specifically tailored
to the airport problem.

CANPLAN2 (Sardiña and Padgham 2007) is a BDI-based
formal language that incorporate an HTN planning mecha-

nism. This approach was further extended in (Sardiña and
Padgham 2011) to address previous limitations such as fail-
ure handling, declarative goals, and lookahead planning. It is
important to note that the CAN family are not implemented
programming languages, although its features could be used
to augment some BDI-based Agent Oriented Programming
(AOP) languages.

The TAEMS framework (Decker 1996) provides a mod-
elling language for describing task structures — the tasks
that the agents may perform. Such structures are repre-
sented by graphs, containing goals and sub-goals that can
be achieved, along with methods required to achieve them.
Each agent has its own graph, and tasks can be shared be-
tween graphs, creating relationships where negotiation or
coordination may be of use. Coordination in TAEMS is
identified using the language’s syntax, and then the devel-
oper choose or create an ad-hoc coordination mechanism
by using the commitment constructs that are available. The
TAEMS framework does no explicit planning, its focus is on
coordinating tasks of agents where specific deadlines may be
required. Its development has been discontinued since 2006.

In (Clement, Durfee, and Barrett 2007), multi-agent plan-
ning algorithms and heuristics are proposed to exploit sum-
mary information during the coordination stage in order to
speed up planning. The key idea is to annotate each abstract
operator with summary information about all of its potential
needs and effects. That often resulted in an exponential re-
duction in planning time compared to a flat representation.
This approach depends on some specific conditions and as-
sumptions, and therefore cannot be used in all domains.

4 Combining MAP with MAS
In order to allow the JaCaMo framework to execute the so-
lution generated by the MAP algorithm, we define a gram-
mar for MAP-POP and a set of algorithms for a translator.
The translator is used to help bridge the planning and execu-
tion stages of multi-agent planning problems. Off-line MAP
algorithms usually ignore the execution stage of planning,
ending up with just a set of plans that has to be implemented
by the user. On the other hand, we have AOP languages and
MAS development frameworks that usually have some kind
of planning capabilities available during runtime (online),
but provide no sophisticated way to solve complex multi-
agent planning problems.

The translator needs as input the definition of a multi-
agent planning problem and the solution for the problem
found by a MAP algorithm. It then provides as output a
MAS specified in JaCaMo that is able to execute the solution
found during the planning stage. If the MAP algorithm be-
ing used during the planning stage also supports single-agent
planning, then the translator should still be able to provide a
valid output, but it will not use all of the abstraction levels
that JaCaMo provides, such as Moise organisations, which
are not necessary in single-agent systems.

A standard input would be ideal for the translation pro-
cess, but in this case it means that we would need to change
the source code of the MAP algorithms. If we develop a stan-
dard input, each new algorithm would need to be adapted to
accept this new input, while if we choose to use the inputs of
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the MAP algorithms, we then have to adapt the grammar and
algorithms of the translator to accept them. Unfortunately,
at the time of writing there is no standard formalism for the
representation of multi-agent planning problems that is ac-
cepted by the MAP community, therefore we chose to adapt
the translator to accept multiple inputs.

The input depends on which MAP algorithm is used, as
each multi-agent planner usually makes its own adaptations
to a planning problem formalism. The MAP-POP algorithm
uses its own extension of PDDL 3.1 for multi-agent plan-
ning. We use this input from the PDDL files of the MAP-
POP algorithm to define the name of the agents in the Ja-
CaMo project file and the roles in the Moise organisation.
We use the PDDL problem file to build CArtAgO artefacts
that represent the initial state of the environment.

The output of MAP algorithms consists of a solution that
solves the global goal of the problem. The MAP-POP algo-
rithm requires coordination constraints alongside the actions
in order to establish the partial order in which the actions
should be executed. This resulted in MAP-POP providing
a solution that allows the organisation in Moise to use the
coordination constraints in order to construct a MAS with
parallel execution of plans.

Both the input and output of the MAP algorithm are given
as input for the translator. The translator then generates a
MAS specified in JaCaMo, containing: JaCaMo project file,
Jason agent’s files, Moise XML specifications, and Java
codes for the CArtAgO artefacts. This standard output pro-
vides generic classes that can be used to integrate new MAP
algorithms. In order to integrate new MAP algorithms, one
would have to develop input and solution grammars (simi-
lar to what we made for MAP-POP), and simply adapt our
translation algorithms accordingly.

A summary of how the translator works is available in the
diagram of Figure 1. The solution provided by the MAP al-
gorithm is translated into AgentSpeak plans, and added to
the respective agent’s plan library in Jason. Because plan
representation and action theory in Jason differs from the ba-
sics of the planning formalisms used by the MAP algorithms
(STRIPS-like), we had to use simple transitions, that is, ev-
ery action in the solution would translate to a plan in Jason
with the preconditions at the context, and the effects of the
action at the body of the plan. After executing the action,
the effects will change the environment, i.e. the CArtAgO
artefacts.

Due to space constraints, in this paper we show only the
grammar of the problem file for MAP-POP. For the full
grammar, all the algorithms, the domain, problem, solution,
and resulting MAS of the case studies present in the next
section check http://bit.ly/1DFqveG.

In Listing 1, we present a simplified BNF grammar based
on the official PDDL 3.1 definition, which can be found
in http://bit.ly/1BRcTC8. Each single quote pair
encloses a string that is expected to appear in the file,
brackets are optional, and the rest are non-terminal symbols.
For example the non-terminal symbol name represents a
terminal string of characters a..z|A..Z.

Figure 1: An overview of the translation process.

Listing 1: Initial lines from the grammar for the problem file.
problem ::= ’((define (problem’ name ’)’

’(:domain name ’)’
objectsDef
[sharedData]
initDef
globalGoals ’)’ ;

objectsDef ::= ’(:objects’ typedList+ ’)’ ;

sharedData ::= ’(:shared-data’ pf+ ’- (
either’ name+ ’) )’ ;

pf ::= predicate | func ;

initDef ::= ’(:init’ literal* ’)’ ;

literal ::= term | ’(not’ term ’)’ ;

term ::= ( ’(’ litName first* name* ’)’ ) |
( ’(= (’ litName first ’)’ name ’)’ ) ;

litName ::= name ;

first ::= name ;

globalGoals ::=’(:global-goal (and’ literal*
’) )’ ;

Similarly, for the translation we show only the main trans-
lation algorithm in Algorithm 1. The translation function
receives as parameters the information contained in the do-
main, problem, and solution files, which are in accordance
with their respective grammar. For example, the notation
in DomainSpec.domain.typesDef.typedList
means that we look in the domain information and inside
typesDef for any typedList, as specified in the domain
grammar. The translation starts by getting the agent types
from the PDDL domain file, and the agents names from the
PDDL problem file. With this information it then calls the
rest of the algorithms, starting with the algorithm for the
translation of the organisation, the algorithm for the plans
in Jason, and finally returning and calling the algorithm for
the CArtAgO artefacts.

To demonstrate part of the translation process consider
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Algorithm 1 Main translation algorithm.
1: function TRANSLATE(DomainSpec, ProblemSpec, So-

lutionSpec)
2: for (n:name, t:type) in Domain-

Spec.domain.typesDef.typedList do
3: if t = ’agent’ then
4: agentsTypes← agentsTypes ∪ n
5: end if
6: end for
7: for t1 in agentsTypes do
8: for (n:name, t2:type) in Problem-

Spec.problem.objectsDef.typedList do
9: if t1 = t2 then

10: agents← agents ∪ (n, t2)
11: end if
12: end for
13: end for
14: organisation ← organisation ∪ create-

Org(SolutionSpec, agentsTypes, agents)
15: agentCode ← agentCode ∪ createAgent-

Code(SolutionSpec, agents)
16: artefacts ← artefacts ∪ createEnv(DomainSpec,

ProblemSpec)
17: return (agents ∪ organisation ∪ agentCode ∪ arte-

facts)
18: end function

Listing 2 and Listing 3, a step (action) from the solution and
its translation to a plan in Jason. The parameters from the
step of the solution are used in the context of the resulting
plan in Jason — these parameters are used to access and up-
date the artefacts, and are also used to check preconditions.
The context (note that the context of a plan starts after the
colon) contains the information to access the necessary arte-
facts, all subsequent lines are each a precondition specified
in that step of the solution. Preconditions that involves only
predicates pertaining the agent that is responsible for exe-
cuting that plan can be checked directly in that agent’s belief
base. The remaining preconditions access the artefacts and
make the necessary tests.

Finally, at the body of a Jason plan (the body starts af-
ter the left arrow), the effects of the step are translated into
Jason actions. The translation can generate two types of ac-
tions: an action that can change the belief base of the agent
that is running that action — this happens if the predicate
in question involves only that same agent; or an action can
result in a change in the environment — i.e. an update to
observable properties of the artefacts that represent the envi-
ronment.

A simple print mechanism is added using the syntax for
detecting plan failure in Jason, -!, that provides basic feed-
back on which plans failed. If a plan fails and it has any sub-
sequent dependent plans in the Moise organisation schema,
the organisation will prevent the execution of those plans as
the previous goals were not achieved. If there were no er-
rors during the translation process, then these plans should
never fail. However, they may fail because of two differ-

ent reasons: new plans were added or translated plans were
edited by the developer; or there may be other agents that
may cause some kind of interference during execution, re-
sulting in plan failure. Regardless, the mechanism for han-
dling plan failure is present only to inform the user of the
failure, it is not possible for the translator to call for replan-
ning mechanisms as the MAP algorithms do not have any
kind of interaction with the execution stage, this is part of
future work.

Listing 2: A step from the solution of a driverlog problem.
3 // step id
driver2 // agent executing this step
Action: board
Parameters: driver2 truck1 street0
Precond:
pos truck1
street0

at driver2
street0

empty truck1
true
Effect:
at driver2
truck1

empty truck1
false

Listing 3: A Jason translated plan for a driverlog problem.
+!board1: V1 = ‘‘truck1’’ & V2 = ‘‘street0’’

& id(V1,Id1) & id(V2,Id2) & at(V2) &
pos(L)[artifact_id(Id1)] & processList(L
,V2) & empty(E)[artifact_id(Id1)] & E

<- -at(V2);
+at(V1);
updateEmpty(false)[artifact_id(

Id1)].
-!board1 <- .print(‘‘Plan board1 failed,

check solution plan.’’).

The roles of the organisation are acquired from the in-
stances of the formalism used to represent the problem,
which in this case with MAP-POP are the PDDL files. By
checking for agent types in Listing 4, and then checking
the objects that use those types in Listing 5, the translator
generates the roles present in Listing 6. The coordination
constraints from the solution found by the MAP-POP algo-
rithm are instantiated in a Moise specification file as a new
schema to be followed by the agents. The plans for adopt-
ing this schema are also added to each agent’s plan library.
The conversion of coordination constraints into schemas is
exemplified in the next section, along with the descriptions
of the driverlog do main and problem that were used as ex-
amples.

Listing 4: Types of the driverlog domain.
(:types location truck obj - object

driver - agent)
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Listing 5: Objects from the problem file that use types in the
driverlog domain.
(:objects

driver1 driver2 - driver
truck1 truck2 - truck
package1 package2 - obj
s0 s1 s2 p1-0 p1-2 - location

)

Listing 6: Example of translated PDDL types into Moise
roles.
<role-definitions>

<role id="driver" />
<role id="driver1"> <extends role="

driver"/> </role>
<role id="driver2"> <extends role="

driver"/> </role>
</role-definitions>

Now for the environment, we obtain the names of the arte-
facts by looking at the objects that are not of type agent in
the problem file, for example, in Listing 5 they are truck, obj,
and location. Next, we create one artefact for each of these
types. Information about these objects are stored in observ-
able properties — when an agent focuses an artefact, the
observable properties of that artefact will be directly repre-
sented as beliefs in that agent’s belief base. In Listing 7 the
truck object has two observable properties, empty (whether
or not there are packages inside) and pos (where the truck
is). For each observable property the artefact also has an op-
eration that allows agents to execute it as an action in order
to update its value.

Listing 7: Example of a CArtAgO artefact representing a
truck object from the driverlog domain.

defineObsProperty("empty");
defineObsProperty("pos");

@OPERATION public void updateEmpty(Boolean
newEmpty) {
ObsProperty opEmpty = getObsProperty("
empty");
opEmpty.updateValue(newEmpty);

At the end of this process all files necessary for the ex-
ecution stage are available and the user can run the system
as any normal JaCaMo system, by running the MAS project
file that was also generated during the translation.

5 Case Studies
In this section we describe two multi-agent adaptations of
single-agent planning problems from previous IPCs: the
driverlog domain and the depots domain. We also discuss
the solution and coordination constraints found by the MAP-
POP algorithm and the output of the translation process, that
is, the MAS that was generated as output.

Performance is not an issue discuss here since there is
no purpose in benchmarking the translation, as the planning
stage is separated from the execution stage. Instead, we fo-
cus on a more qualitative evaluation, analysing the input and
output during the planning and execution stages.

Driverlog Domain
The Driverlog domain is a simple problem of logistics.
There are several streets and passageways that may contain
packages, trucks, and drivers. A driver cannot directly walk
through streets, it can only walk through passageways that
have paths between a street and a passageway. When driv-
ing a truck, a driver can then drive through streets that are
linked with each other.

In this domain we only have one type of agent, the driver,
as it is the only object that can perform actions. The agent
can perform the following actions:

• load truck: loads a package from a location into a truck;

• unload truck: unloads a package from a truck into a lo-
cation;

• board truck: the driver enters the truck at a location;

• disembark truck: the driver leaves the truck at a location;

• drive truck: the driver drives the truck from a street to
another;

• walk: the driver walks from a location that contains a path
to another location.

The initial state of the problem can be observed in Fig-
ure 2. All the streets are linked, but note that only a truck can
move through the linked streets. The drivers, when not driv-
ing a truck, can only move through passageways that have
paths to streets. The global goal is to have driver1 at s1, and
t1 at s1. That is, driver1 and truck1 should be at street1.

Figure 2: Initial state of the problem for the Driverlog do-
main.

The solution found by MAP-POP for the Driverlog prob-
lem contained the following steps:

• Id 0 — Initial Step

• Id 1 — Final Step

• Id 2 — agent driver2: drive t1 to s1

• Id 3 — agent driver2: board t1 at s0
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• Id 4 — agent driver2: walk from p1-0 to s0
• Id 5 — agent driver2: walk from s1 to p1-0
• Id 6 — agent driver2: walk from p1-2 to s1
• Id 7 — agent driver2: walk from s2 to p1-2
• Id 8 — agent driver1: walk from p1-2 to s1
• Id 9 — agent driver1: walk from s2 to p1-2

The partial order in which these steps need to be executed
can be obtained from the ordering constraints, also provided
in the solution. The ordering constraints are represented in
pairs of Ids, the first Id is the step that must come before the
second, e.g. 0 — 1 means that the step with Id 0 must come
before the step with Id 1. We can also use this order to set
the plan operators, i.e. if it will be executed in parallel or
sequentially, in the Moise schema. The execution order for
the solution of this problem is (numbers between commas
can be executed in parallel): 0 — 7,9 — 6,8 — 5 — 4 — 3
— 2 — 1.

Depots Domain
The Depots domain is more complex than the previous do-
main, as it involves different types of agents. In this domain
trucks are used to transport crates between warehouses, with
the help of hoists that are present in each warehouse.

There are two types of agents: trucks and locations. Note
here that a location (depots or distributors) is a type of agent,
since each location has control over a hoist. A truck can per-
form the following actions:
• drive: move the truck from a place to another;
• load: loads a crate that a hoist has into the truck;
• unload: unloads a crate from the truck to a hoist.

A location can perform the following control actions with
its hoist:
• liftP: lifts a crate that is on top of a pallet;
• liftC: lifts a crate that is on top of another crate;
• dropP: drops a crate on top of a pallet;
• dropC: drops a crate on top of another crate.

The initial state of the problem can be observed in Fig-
ure 3. Truck t1 is located at depot0, and truck t2 is lo-
cated at distributor1. A truck agent is able to move
freely between any of the locations. The global goal is to
have c0 on p2, and c1 on p1, i.e. crate0 must be moved to
distributor1 and crate1 must be moved to distributor0.

Next we have the solution found by MAP-POP for the
Depots domain:
• Id 0 — Initial Step
• Id 1 — Final Step
• Id 2 — agent ditributor1: drop c0 on p2 at distributor1
• Id 3 — agent distributor0: drop c1 on p1 at distributor0
• Id 4 — agent distributor0: lift c0 from p1 at distributor0
• Id 5 — agent truck2: unload c0 to h2 at distributor1
• Id 6 — agent truck2: load c0 from h1 at distributor0

Figure 3: Initial state of the problem for the Depots domain.

• Id 7 — agent truck1: unload c1 to h1 at distributor0

• Id 8 — agent truck1: load c1 from h0 at depot0

• Id 9 — agent truck2: drive from distributor0 to distribu-
tor1

• Id 10 — agent depot0: lift c1 from p0 at depot0

• Id 11 — agent truck1: drive from depot0 to distributor0

• Id 12 — agent truck2: drive from distributor1 to distribu-
tor0

Once again, we find the partial order of actions by retrac-
ing all the ordering constraints, resulting in the order: 0 —
4,10,12 — 6,8 — 9,11 — 5,7 — 2,3 — 1.

Translation
The translator extracts from the solution the steps and the
ordering constraints. Each agent directly represents a role
in the Moise organisation, e.g. objects driver1 and driver2
are translated as roles that extend a driver role in the Moise
specification file under the structural specification. For fu-
ture work we expect to implement, for example, only the
role of driver with a maximum cardinality of 2. In the Moise
functional specification we translate steps into goals, with
the plan operators (sequence or parallel) that were extracted
from the ordering constraints.

Every role (agent) has its mission, and that mission con-
tains all the goals that need to be executed by that partic-
ular role. Links and formation constraints, two Moise fea-
tures, are not considered in our translation algorithms, but
they could be expressed by making a few adaptations in the
planning formalism. However, since we are using the default
input of the MAP algorithms we chose not to make use of
these features.

As for the environment, the translator checks the initial
state provided by the input of the MAP algorithms. If one
of the variables in an initial state is an agent, then that state
will be represented as a belief in that particular agent’s belief
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base. If not, then it will be stored as an observable property
in its respective artefact.

The information about initial states is also used to instan-
tiate initial values for the observable properties, that are de-
fined by the predicates and functions of the problem domain.
An artefact is created for each type declared as an object
in the domain file, to represent the initial state of the en-
vironment. For the driverlog domain we have artefacts for
location, truck, and obj. For the depots domain we
have artefacts for hoist and surface. When an agent
executes the operation of an artefact, it updates the observ-
able properties of the artefact that is involved by using the
effects of that particular action.

For the Jason plans, each step is converted to a plan that
is added to the agent’s plan library, with that step’s respec-
tive preconditions and effects. In the end of this process we
obtain a MAS that can execute the solution for a driverlog
problem and a MAS for a depots problem.

6 Conclusion
We integrated a multi-agent planner into JaCaMo through
the use of a translator. JaCaMo provided practical solutions
for some of the problems that appeared in the execution
stage, such as the coordination of agents using Moise organ-
isations, representation of the environment with CArtAgO
artefacts, and execution of the solution using Jason agents.

The execution stage of planning is often overlooked when
dealing with off-line planning. Our work tries to bridge this
gap by using translation algorithms to create a MAS, using
the input and output of a multi-agent planner. Our goal with
this work was to provide the developers with an initial multi-
agent system implementation for a target scenario, based on
the solutions found by the multi-agent planner, and to pro-
vide a basis for extending other MAP algorithms to work
with JaCaMo.

We are investigating two other possible choices of MAP
algorithms to be integrated with JaCaMo, the Planning-
First (Nissim, Brafman, and Domshlak 2010) and the MAD-
A* (Nissim and Brafman 2012). Planning-First is a general,
distributed multi-agent planning algorithm that uses Dis-
tributed Constraint Satisfaction Problem to coordinate the
agents. The MAD-A* is an adaptation for multi-agent plan-
ning of one of the best known heuristic search algorithm,
A*.

During our work we identified a few downsides:

• although the translation can be used to fill the gap between
planning and execution stages, it is not a seamless transi-
tion such as the one present in online planning;

• plans in Jason are different from the PDDL formalism
used by the three MAP algorithms, which resulted in a
simplified conversion of steps to plans;

• the performance was strictly dependent on the perfor-
mance of the MAP algorithm used during the planning
stage.

For future work we would like to use JaCaMo agents not
only during the execution stage, but also during the planning
stage, which would allow most of the translation to be done

directly, and make the transition between planning and ex-
ecution stages much more seamless. For example, an HTN
planner would be able to provide agents in Jason with much
more robust plans than previously, and also allows it to make
use of current plans present in the agent’s plan library prior
to the planning stage. This may lead to performance gains
and possibly some kind of planning and/or replanning dur-
ing runtime.

Another line for future work includes the standardisation
of input used by the algorithms, so that the translator ac-
cepts a standard input file. This input could be a completely
new formalism or, for example, the PDDL 3.1 Multi-Agent
extension introduced in (Kovacs 2012). This extension al-
lows planning for agents in temporal, numeric domains and
copes with many of the already discussed open problems
in multi-agent planning, such as the exponential increase in
the number of actions, but it also approaches new problems
such as the constructive and destructive synergies of concur-
rent actions. This would also make the process of including
a new MAP algorithm easier and at the same time promote
a standard formalism to represent domains and problems in
multi-agent planning, which at the time of writing does not
exist.

Finally, we would also like to test our work on real
world applications, such as robotics. Specifically, the sce-
nario we have in mind is the use of Unmanned Aerial Ve-
hicles (UAVs) to monitor, control, and mitigate flash flood
occasioned by heavy rain when associated with severe thun-
derstorms. The planner could be used to generate possible
trajectories in flash flood locations, while JaCaMo is used to
coordinate the UAVs and reason about possible courses of
actions.
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