
ESCOLA POLITÉCNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

DOUTORADO EM CIÊNCIA DA COMPUTAÇÃO

ARTUR LUIZ SILVA DA CUNHA FREITAS

MODEL-DRIVEN ENGINEERING OF MULTI-AGENT SYSTEMS

BASED ON ONTOLOGY

Porto Alegre

2017

Powered by TCPDF (www.tcpdf.org)

PONTIFICAL CATHOLIC UNIVERSITY OF RIO GRANDE DO SUL
FACULTY OF INFORMATICS

COMPUTER SCIENCE GRADUATE PROGRAM

MODEL-DRIVEN ENGINEERING
OF MULTI-AGENT SYSTEMS

BASED ON ONTOLOGY

ARTUR LUIZ SILVA DA CUNHA
FREITAS

Dissertation submitted to the Pontifical

Catholic University of Rio Grande do Sul

in partial fullfillment of the requirements

for the degree of Ph. D. in Computer

Science.

Advisor: Prof. Renata Vieira

Co-Advisor: Prof. Rafael H. Bordini

Porto Alegre
2017

Artur Luiz Silva da Cunha Freitas

Model-Driven Engineering of Multi-Agent Systems based on Ontology

This Thesis has been submitted in partial fulfillment

of the requirements for the degree of Doctor of

Computer Science, of the Graduate Program in

Computer Science, School of Computer Science of

the Pontifícia Universidade Católica do Rio Grande

do Sul.

Sanctioned on ________31/08/2017_______.

COMMITTEE MEMBERS:

Prof. Dr. Jorge Luis Victoria Barbosa (PIPCA/UNISINOS)

Prof. Dr. Antonio Carlos da Rocha Costa (PPGComp/FURG)

Profa. Dra. Soraia Raupp Musse (PPGCC/PUCRS)

Profa. Dra. Renata Vieira (PPGCC/PUCRS - Advisor)

Prof. Dr. Rafael Heitor Bordini (PPGCC/PUCRS - Co-Advisor)

Powered by TCPDF (www.tcpdf.org)

ACKNOWLEDGMENTS

This journey would not have been possible without the support of my family, profes-

sors, and friends. To my family, thank you for encouraging me in my pursuits, inspiring me

to follow my dreams and wanting the best for me. To my professors, thank you for showing

me what it means to be a dedicated professional, pushing my limits and believing in me. To

my advisor and co-advisor, receiving your guidance and working together to achieve such

amazing results that we made together were of great pleasure and honour for me. To my

friends, thank you for listening, offering me advice and supporting me through this process.

Lastly but not least, I am grateful for my girlfriend for all the special moments together.

Several achievements made me very proud during the course of my doctorate de-

gree. I had the opportunity to participate in a research project sponsored by a multi-national

company, which resulted in a registered patent and several papers. Then, I had the opportu-

nity of presenting my work at international conferences and joining (summer and workshop)

schools in the main areas of my doctorate degree. I am glad for integrating the PUCRS

team in the Multi-Agent Programming Contest that was awarded the first place in the com-

petition. Also, I had the excellent opportunity of acting as teacher assistant during one year

in the course of “Logic for Computing” for undergraduate students. All of these amazing

experiences resulted in great learning opportunities for me.

The following are the acknowledgments to those who funded or were in any way

important at least in part for the accomplishment of this work:

• We are grateful for the support given by CNPq and CAPES.

• Part of the results were obtained through research on a project titled “Semantic and

Multi-Agent Technologies for Group Interaction”, sponsored by Samsung Eletrônica da

Amazônia Ltda. under the terms of Brazilian federal law No. 8.248/91.

• Several open source solutions are acknowledged, such as JaCaMo, Eclipse, OWL API,

Protégé, Pellet, Java, etc.

ENGENHARIA DIRIGIDA A MODELOS DE SISTEMAS MULTIAGENTES

BASEADOS EM ONTOLOGIA

RESUMO

A engenharia orientada a modelos fornece abstrações e notações para melhorar a

compreensão e para apoiar a modelagem, codificação e verificação de aplicações em do-

mínios específicos. As ontologias, por outro lado, fornecem definições formais e explícitas

de conceitualizações compartilhadas e permitem o uso de raciocínio semântico. Embora

essas áreas tenham sido desenvolvidas por diferentes comunidades, sinergias importantes

podem ser alcançadas quando ambas são combinadas. Essas vantagens podem ser explo-

radas no desenvolvimento de sistemas multiagentes, dada a sua complexidade e a neces-

sidade de integrar vários componentes que são frequentemente abordados de diferentes

ângulos. Este trabalho investiga como aplicar ontologias para engenharia de software ori-

entada a agentes. Inicialmente, apresentamos uma nova abordagem de modelagem onde

os sistemas multiagentes são projetados usando a ontologia OntoMAS proposta. Então,

descrevemos técnicas, implementadas em uma ferramenta, para ajudar os programadores

a trazer seus conceitos em código e também gerar código automaticamente a partir de mo-

delos instanciados da ontologia. Várias vantagens podem ser obtidas a partir dessas novas

abordagens para modelar e codificar sistemas multiagentes, como o raciocínio semântico

para realizar inferências e mecanismos de verificação. Mas a principal vantagem é a lingua-

gem de especificação unificada de alto nível (conhecimento) que permite modelar as três

dimensões que estão unidas em JaCaMo para que as especificações dos sistemas possam

ser melhor comunicadas entre equipes em desenvolvimento. As avaliações dessas propos-

tas indicam que elas contribuem com os diferentes aspectos da engenharia de software

orientada a agentes, como a especificação, verificação e programação desses sistemas.

Palavras-Chave: Ontologia, Sistema Multiagente, Engenharia Dirigida a Modelos, Enge-

nharia de Software Orientada a Agentes, JaCaMo, OntoMAS, Onto2JaCaMo.

MODEL-DRIVEN ENGINEERING OF MULTI-AGENT SYSTEMS BASED

ON ONTOLOGY

ABSTRACT

Model-driven engineering provides abstractions and notations for improving the un-

derstanding and for supporting the modelling, coding, and verification of applications for spe-

cific domains. Ontologies, on the other hand, provide formal and explicit definitions of shared

conceptualisations and enable the use of semantic reasoning. Although these areas have

been developed by different communities, important synergies can be achieved when both

are combined. These advantages can be explored in the development of multi-agent sys-

tems, given their complexity and the need for integrating several components that are often

addressed from different angles. This work investigates how to apply ontologies for agent-

oriented software engineering. Initially, we present a new modelling approach where multi-

agent systems are designed using the proposed OntoMAS ontology. Then, we describe

techniques, implemented in a tool, to help programmers bring their concepts into code and

also generate code automatically from instantiated ontology models. Several advantages

can be obtained from these new approaches to model and code multi-agent systems, such

as semantic reasoning to carry out inferences and verification mechanisms. But the main

advantage is the unified high (knowledge) level specification language that allows modelling

the three dimensions that are united in the JaCaMo framework so that systems specifi-

cations can be better communicated across developing teams. The evaluations of these

proposals indicate that they contribute with the different aspects of agent-oriented software

engineering, such as the specification, verification, and programming of these systems.

Keywords: Ontology, Multi-Agent System, Model-Driven Engineering, Agent-Oriented Soft-

ware Engineering, JaCaMo, OntoMAS, Onto2JaCaMo.

LIST OF FIGURES

Figure 2.1 – Agent-oriented IDEs (obtained and adapted from [PB09]). 36

Figure 3.1 – Structure of subtopics in this Section of related work. 37

Figure 4.1 – AOSE methodology using OntoMAS and Onto2JaCaMo. 48

Figure 4.2 – Concepts and properties in the agent dimension of OntoMAS. 49

Figure 4.3 – Concepts and properties in the environment dimension of OntoMAS. 53

Figure 4.4 – Concepts and properties in the organisation dimension of OntoMAS. 56

Figure 4.5 – Main properties for integrating concepts of OntoMAS dimensions. . . 58

Figure 4.6 – Agent example (adaptation of image published in [FBV17]). 60

Figure 4.7 – Environment example (adaptation of image published in [FBV17]). . . 61

Figure 4.8 – Organisation example (adaptation of image published in [FBV17]). . . 62

Figure 4.9 – Subclasses of agent with some conditions, instances, and rules in

the ontology with asserted and inferred properties (first published in [FBV17]). 63

Figure 5.1 – Sequence of activities conducted in the modelling experiments. 68

Figure 5.2 – Comparing Prometheus (P) and OntoMAS (O) (first shown in [FBV17]). 69

Figure 5.3 – Correctly representation of JaCaMo characteristics in each approach. 71

Figure 6.1 – Converting ontology to MAS code (images adapted from [FSP+15]). 81

Figure 6.2 – Activating Onto2JaCaMo in Eclipse (first published in [FBV17]). 87

Figure 6.3 – Drag-and-drop in Eclipse for MAS coding (first published in [FHM+15]). 88

Figure 6.4 – Changing the JaCaMo target platform in Onto2JaCaMo. 89

Figure 7.1 – Participant opinions on their use of Onto2JaCaMo plug-in. 93

Figure B.1 – Console of Hello World implemented until this point. 120

Figure B.2 – Console of Hello World using artifacts. 121

Figure B.3 – Illustrating a mission of the desired Hello World organisation. 121

Figure B.4 – Illustrating a group of the desired Hello World organisation. 122

Figure B.5 – The console output resulting from this Hello World scenario. 122

Figure C.1 – Gold Miners execution illustrated. 124

LIST OF TABLES

Table 3.1 – Comparing related work in the areas of MDE, MAS, and ontologies

(adaptation from Table published in [FBV17]). 45

Table 4.1 – Ontological object properties in the agent dimension. 51

Table 4.2 – Ontological object properties in the environment dimension. 54

Table 4.3 – Ontological object properties in the organisation dimension. 57

Table 4.4 – Ontological object properties integrating concepts of different MAS

dimensions. 59

Table 5.1 – Comparing the presence of elements in Prometheus and OntoMAS

models in some of the key elements of JaCaMo projects. 72

Table 6.1 – Drag-and-drop code generation for Jason from ontology elements. . . . 77

Table 6.2 – Drag-and-drop code generation for CArtAgO from ontology elements. 78

Table 6.3 – Drag-and-drop code generation for Moise from ontology elements. . . . 79

Table 6.4 – Drag-and-drop code generation for JCM file from ontology elements. . 80

Table 6.5 – Template code generation for Jason from ontology elements. 83

Table 6.6 – Template code generation for CArtAgO from ontology elements. 84

Table 6.7 – Template code generation for Moise from ontology elements. 85

Table 6.8 – Template code generation for JCM file from ontology elements. 86

Table 7.1 – Similarities between code generation from model and the code actu-

ally programmed by the participant for the Rescue Scenario. 96

LIST OF ACRONYMS

AOP – Agent-Oriented Programming

AOSE – Agent-Oriented Software Engineering

API – Application Programming Interface

BDI – Belief-Desire-Intention

DL – Description Logics

EOP – Environment-Oriented Programming

FIPA – Foundation for Intelligent Physical Agents

AI – Artificial Intelligence

IDE – Integrated Development Environment

MAOP – Multi-Agent Oriented Programming

MAPC – Multi-Agent Programming Contest

MAS – Multi-Agent System

MDE – Model-Driven Engineering

OOP – Organisation-Oriented Programming

OWL – Web Ontology Language

PDT – Prometheus Design Tool

SE – Software Engineering

SWRL – Semantic Web Rule Language

UML – Unified Modeling Language

XML – eXtensible Markup Language

CONTENTS

1 INTRODUCTION . 21

1.1 MOTIVATION . 23

1.2 RESEARCH GOALS . 25

1.3 THESIS STRUCTURE . 26

2 THEORETICAL BACKGROUND . 29

2.1 MODEL-DRIVEN ENGINEERING . 29

2.2 ONTOLOGY . 30

2.3 MULTI-AGENT SYSTEMS DEVELOPMENT PLATFORMS 32

3 RELATED WORK . 37

3.1 MODEL-DRIVEN ENGINEERING AND MULTI-AGENT SYSTEMS 37

3.2 MODEL-DRIVEN ENGINEERING AND ONTOLOGIES 40

3.3 ONTOLOGIES AND MULTI-AGENT SYSTEMS . 41

3.4 ONTOLOGIES FOR MODELLING MULTI-AGENT SYSTEMS 43

3.5 SUMMARY . 44

4 AN ONTOLOGY FOR MODELLING MAS: ONTOMAS 47

4.1 AGENT DIMENSION OF MULTI-AGENT SYSTEMS . 48

4.2 ENVIRONMENT DIMENSION OF MULTI-AGENT SYSTEMS 52

4.3 ORGANISATION DIMENSION OF MULTI-AGENT SYSTEMS 55

4.4 CONNECTING AGENTS, ENVIRONMENTS, AND ORGANISATIONS 58

4.5 AN EXAMPLE OF MAS MODELLED BASED ON ONTOMAS 59

4.6 ONTOLOGICAL REASONING OVER ONTOMAS MODELS 63

5 EVALUATING ONTOMAS IN THE MODELLING OF MAS 67

5.1 EVALUATIONS ON THE USE OF ONTOMAS X PROMETHEUS 68

5.2 COMPARING THE MODELS CREATED IN PROMETHEUS AND ONTOMAS . 71

6 TECHNIQUES FOR PROGRAMMING USING ONTOMAS 75

6.1 DRAG-AND-DROP TRANSFORMATIONS FROM ONTOMAS TO JACAMO . . . 76

6.2 INITIAL JACAMO PROJECT GENERATION FROM ONTOMAS MODELS 81

6.3 ONTO2JACAMO TOOL FOR ONTOLOGY-BASED DEVELOPMENT OF MAS . 87

6.4 CONSIDERATIONS ON THE ONTO2JACAMO TOOL AND ITS TECHNIQUES 89

7 EVALUATING THE PROGRAMMING TECHNIQUES AND TOOL 91

7.1 EVALUATIONS ON THE USE OF DRAG-AND-DROP AND ONTO2JACAMO . . 91

7.2 EVALUATING THE GENERATION OF AN INITIAL JACAMO PROJECT FROM

ONTOMAS MODELS . 95

8 FINAL REMARKS . 99

8.1 STANCES OF MAS NOT ADDRESSED IN ONTOMAS 101

8.2 FUTURE WORK AND NEW RESEARCH DIRECTIONS 102

8.3 PUBLICATIONS IN THE MAIN THEME OF THIS THESIS 104

8.4 PUBLICATIONS IN SUPPLEMENTARY AREAS OF THIS THESIS 105

REFERENCES . 107

APPENDIX A – Guidelines for Project Conception using OntoMAS 115

APPENDIX B – Hello World Specification as used in the Experiments 119

APPENDIX C – Gold Miners Specification as used in the Experiments 123

APPENDIX D – Drag-and-Drop Transformations from OntoMAS to JaCaMo . . . 127

APPENDIX E – Template Code Generation from OntoMAS Specifications 135

21

1. INTRODUCTION

“A journey of a thousand miles begins with a

single step."

— Lao Tzu (604 BC - 531 BC)

Model-Driven Engineering (MDE) employs models as the cornerstone of software

development processes [GNFC12] in order to improve productivity, portability, interoperabil-

ity, maintenance, and so on. MDE is a research area that provides abstractions and nota-

tions to improve the understanding and to support the modelling of applications for specific

domains. These advantages can be employed in the development of Multi-Agent Systems

(MAS) given their complexity and the need for integrating several components that are often

addressed from different angles [FHM+15]. For example, the JaCaMo [BBH+13] framework

for MAS programming combines three separate technologies: Jason [BHW07] for coding

the dimension of autonomous agents in AgentSpeak, CArtAgO [RVO06] for programming

the environment as artifacts in Java, and Moise [HBKR10] for specifying MAS organisations

in XML. JaCaMo is claimed to be the first successful combination of Agent-Oriented Pro-

gramming (AOP), Organisation-Oriented Programming (OOP), and Environment-Oriented

Programming (EOP) in a specific programming platform [BBH+13]. In this context, program-

mers have three distinct starting points to code a MAS, making appropriate to have a single,

unified and comprehensive meta-model combining all these dimensions [FBV17]. Besides

filling the gaps between design and development, this modelling framework can be the basis

of features such as code generation, support during programming, and reasoning to analyse

a given system implementation.

In this context, the use of models is present in most agent methodologies [GNFC12]

and MDE techniques for Agent-Oriented Software Engineering (AOSE) emerges naturally.

A typical example of MDE for MAS is Prometheus [PW03]; however, differently from our

work, the authors do so without exploring any use of formal ontologies as part of such

models. In fact, there are already modelling frameworks for more than one dimension of

MAS [PW03, GNFC12, UH14], but without using formal ontologies, semantic reasoning, or

employing the model during the programming step. In literature, when an ontology is used

to model a MAS, only a part is modelled, such as the environment [OVBdRC06] or the

organisation [Zar12]. Currently, the use of ontologies to model integrated frameworks that

consider the co-specification of different MAS dimensions is still an open issue [FSP+15].

We observe two additional points: (i) MDE and ontologies share a number of principles and

goals; and (ii) there is consistent work in combining ontologies and MAS. These synergies

led us to propose and investigate the use of ontology for MDE of MAS, which has resulted

in a model-based approach that pioneers in simultaneously covering all these issues. This

idea was conceived when considering research comparing ontologies with MDE [AGK06,

22

KKK+06, SWGP10], and also observing that when ontologies are used in MAS it is usually

for purposes others than modelling [MVBH06, KB08, MAB+14]. Moreover, we propose a tool

to load an ontological instantiation in order to generate code for the different MAS platforms

that are part of JaCaMo [BBH+13]. As an analogy, the ontology proposed in this work acts

as a meta-model, and its instantiation represents a model, which in our case is applied to

specify a MAS implementation project for JaCaMo.

Ontologies can offer significant benefits for MAS, such as for example in terms of in-

teroperability, reusability, support for MAS development activities (e.g., system analysis and

agent knowledge modelling), new features for MAS operation (e.g., agent communication

and reasoning), and so on [TL08]. Also, ontologies may be used at different stages within

AOSE [HWDC09], so as to: enable decomposition of the overall problem, support the pro-

cess of information retrieval and reuse, support the process of analysing and manipulating

information, and enable communication between cooperatively working agents. However,

we are not aware of any previous exploitation of ontologies and their benefits in the global

modelling of MAS where such model is used also in a tool during the programming phase.

We started our investigation by systematically surveying the literature for current

approaches and advantages that ontologies can provide for MAS. Then, we explored uses

and benefits of applying ontology in the global modelling of MAS where such framework

includes techniques to offer support also for the programming phase. A particular feature

of our approach is that we are proposing the use of ontology as the basis for modelling,

development, and verification of MAS. To the best of our knowledge, there is no previous

work that has achieved all that. Therefore, the main contributions of this thesis are three-

fold. First, we are arguing that the use of ontologies improves the modelling, programming

and verification of MAS, which emerges from our analysis of the state of the art research

directions on the integration of MDE, ontologies, and MAS [FSP+15, FBMV15, FCVB16].

Second, we are proposing and investigating an ontological modelling approach [FBV17] that

considers the global characteristics of MAS, as it incorporates the agent, the environment,

and the organisation dimensions. This approach covers MAS design and development as a

whole in an integrated formalism. Also, using this ontology naturally enables the executions

of semantic reasoners which provide inference mechanisms that can be used for verification

and validation on the designed models. Third, we describe our techniques that are imple-

mented in a tool [FHM+15] for using MDE to support MAS programming based on a MAS

designed with our proposed ontology modelling approach. This new platform provides fea-

tures such as drag-and-drop and auto-complete from ontologies to MAS code in a plug-in

for the Eclipse [Bud04] Integrated Development Environment (IDE).

Some of the key issues in developing MAS are: (i) techniques for integrating design

and code; (ii) extension of agent-oriented programming languages to cover certain aspects

that are currently weak or missing (e.g., social concepts, and modelling the environment);

and (iii) development of debugging and verification techniques, with a particular focus on

23

using model checking in testing and debugging, and applying model checking to design ar-

tifacts [BDW06]. Our research directly addresses two of these problems. First, it contributes

with the integration of design and code as we demonstrate in our approach for generating

code from models represented as ontological specifications. Second, our approach enables

features of semantic reasoning and verification techniques on top of instantiated ontology-

based models. Mechanisms for solving the aforementioned issues are claimed to be crucial

for the practical adoption and deployment of agent technology [BDW06]. Thus, the investi-

gation of software development methodologies should provide interesting answers, solutions

and improvements for problems in AOSE. This thesis contributes with this point by means

of proposing and evaluating the use of ontology-based techniques to support MAS mod-

elling and programming, in which we refer to as OntoMAS and Onto2JaCaMo. In such new

approaches, the MAS starts to be modelled according with the OntoMAS ontology (more

details about modelling can be seen in Section 4). Then, the resulting model can be used in

our proposed techniques, implemented in the Onto2JaCaMo tool, in order to generate MAS

code for JaCaMo (we refer to Section 6 for more details about the programming support).

1.1 Motivation

The development of MAS, like developing any software system, encompasses ac-

tivities traditionally classified into three broad areas: software engineering (e.g., require-

ments elicitation, analysis, design), implementation (using some suitable programming lan-

guage), and verification/validation [BDW06]. In current practice, the way in which a MAS is

typically built is that the developer designs the agent organisation and the individual agents,

then takes the detailed design and manually codes the agents in some programming lan-

guage. The issue with developing the implementation manually from the design is that this

creates the possibility for divergences between design and implementation, which makes

the design less useful for further work in maintenance and comprehension [BDW06]. Thus,

it would be optimal to have code and design being seen as different views on what is re-

ally a single conceptual activity [FBV17]. The key action to be done with respect to this is

developing techniques and tools that allow for design and code to be strongly integrated

with consistency checking and change propagation. Among the possible approaches for

mitigating this “gap” between code and design there are: (i) the generation of code from

design; and (ii) the extraction of changes in design/code to apply in the other [BDW06]. To

consider useful the generation of code from design, techniques are required to ensure the

continued consistency of design and code when one or the other is changed. However,

such techniques must be developed to link one particular design notation with one target

programming language [BDW06]. This thesis focuses on the proposed OntoMAS ontology

24

for playing the role of design notation, and JaCaMo [BBH+13] as the target programming

platform for our code generation techniques that are implemented in the Onto2JaCaMo tool.

As design notation, UML (Unified Modeling Language), in its original form, pro-

vides insufficient support for modelling MAS [dSdL03], such as, for example, the ones

created with JaCaMo [BBH+13]. The development of MAS in JaCaMo comprises three

distinct dimensions, namely: agent, environment, and organisation. However, these di-

mensions are not uniformly integrated into a single formalism: agents are programmed in

Jason [BHW07] using the AgentSpeak language; environments are coded in Java using

the CArtAgO API [RVO06]; and organisations are specified in Moise [HBKR10] using XML.

Some disadvantages of this current approach are that: (i) programmers have three distinct

starting points to code their MAS; (ii) it is difficult to keep track of issues because errors in

one level can affect the other levels; (iii) it becomes cumbersome to explore interconnections

between the different layers; and (iv) it requires programmers to have knowledge about dif-

ferent paradigms [FSP+15]. Agent-based systems require adequate techniques that explore

their benefits and their peculiar characteristics [dSdL03]. To address these issues, this thesis

is proposing a unified semantic model which covers these three MAS programming dimen-

sions and integrates their formalisms. An integrated ontological model that represents these

MAS dimensions also enables semantic reasoning and can be used as a common vocab-

ulary in agent-oriented programming. In our thesis these dimensions can interconnect with

each other, and reuse relevant concepts from the other MAS dimensions. Each dimension

details different aspects, and these interconnections when combined result in an integrated

knowledge model with a clear correspondence to an integrated programming platform, such

as JaCaMo [BBH+13].

Some aspects of MAS, such as the organisational properties addressed by Moise

[HBKR10], are already related to a programming framework. This allows to convert from

ontological specifications to a programming level [Zar12], which provides more flexibility for

modelling and developing the organisation dimension of MAS. This OWL semantic descrip-

tion of agent organisations also helps agents in becoming aware, querying, and reasoning

about their social and organisational context in a uniform way [Zar12]. We have found also an

environment ontology [OVBdRC06] based on MAS environment aspects of agent program-

ming technologies. This modelling approach can be used to specify environments and derive

a project-level, complete, and executable definition of multi-agent environments. Semantic

representations of MAS environments also improve the way agents reason about the objects

with which they interact and the overall environment where they are situated [OVBdRC06].

This is important because most agent-oriented programming languages are weak in allow-

ing the developer to model the environment within which the agents will execute [BDW06].

Such modelling frameworks are desirable for all dimensions at the same time, but these

levels have to be aligned for that to work as a common specification. This will make pos-

sible to model, to reuse, and to extend the MAS in one dimension while maintaining the

25

others, which enables the designer to work without going into specifics of the programming

languages that define each dimension. In this context, agent system’s designs are more

easily expressed and communicated, and the resulting models can be more easily verified

and converted to code in agent-oriented programming languages.

We claim that ontologies have an important role for all MAS dimensions and in the

whole system development, rather than exclusively in the programming phase [FBV17]. This

is in line with CArtAgO development directions [RVO06] in considering ontologies to repre-

sent the artifacts, with Moise’s recent research which proposes a semantic description of

multi-agent organisations [Zar12], and with ontologies of MAS environments [OVBdRC06].

These are however all separate initiatives, whereas in the development of MAS an ontol-

ogy should interconnect the various specification levels [FBV17]. This allows for an unified

view of systems engineering, and should co-exist with integrated agent platforms, such as

JaCaMo [BBH+13]. As result, developers obtain a new paradigm for developing complex

software systems with a semantic infrastructure that applies principles both from software

engineering and knowledge engineering. Unified MAS programming platforms, such as

JaCaMo [BBH+13], are being developed with the purpose of helping developers to build

these complex solutions, however, such unification must happen during the system design

and at the modelling and knowledge level [FBV17]. Thus, this thesis investigates the inte-

gration of agent programming platforms by applying ontologies to streamline model-based

development of MAS in JaCaMo.

1.2 Research Goals

This research focuses on improving MAS modelling and development by exploring

the use of ontology and MDE approaches. We formalise this point in one main research

goal, and goals that are means of achieving that, as follows:

• Main research goal: To elaborate an ontology-based approach in the domain of MAS

modelling to support MAS developers and investigate its uses. Sections 4 and 6 show

our research in this direction. To address this goal, the following questions must be

considered:

- How to specify/model the design of a MAS using an ontology?

- How elements from ontologies can be explored to support MAS development?

- Which tools/benefits/reasoning may be obtained from such ontology representation?

26

The means of achieving and verifying the achievement of this goal are:

• Goal 1) To investigate ontologies and model-based development approaches in AOSE

that address questions such as MAS modelling, knowledge representation, and rea-

soning. Sections 2 and 3 are specially dedicated to achieve this goal, which includes:

- To review the current literature in the areas of MDE, ontology, and MAS modelling;

- To analyse and to compare existing solutions in order to point out possible limitations.

• Goal 2) To explore and to evaluate the impact of the ontology model and derived tech-

niques and tools in MAS modelling, development, and verification. Sections 5 and 7

are specially dedicated to this goal, which includes:

- To plan, to execute, and to analyse tests to explore the use of our ontology to support

AOSE;

- To perform experiments to investigate the resulting ontology-based tools;

- To compare our new approaches in practice against the usual ones in MAS modelling,

development, and verification.

Our work aims to achieve a model-based approach using ontology to cover all

required dimensions and abstractions of MAS. This thesis differs from other approaches

where: (i) ontologies are not used; (ii) only a part of such systems is modelled in ontologies;

or (iii) the modelling approach is not integrated with coding or verification mechanisms. In

our thesis, an ontology is used for modelling and verification of MAS, and a model-based tool

supports the programming of these systems in each of their main dimensions. Examples of

advantages derived from such research are techniques for: (i) integrating design and code;

(ii) supporting MAS programming through model-based development; and (iii) performing

verification with focus on the use of semantic reasoning and model checking. To the best

of our knowledge, this work is the first exploitation of ontologies and their benefits in the

global modelling and verification of MAS where such model is used also in a tool during the

programming phases.

1.3 Thesis Structure

This thesis is structured as follows:

• Section 2 introduces the background knowledge to support our work, which addresses

the areas of MDE, ontologies, and MAS.

• Section 3 explains related work through the interconnection of MDE, ontologies, and

MAS. This literature review gives special emphasis on previous ontologies related to

MAS aspects: agents, organisations, and environments.

27

• Section 4 presents the definitions and exemplifies the use of our ontology-based MDE

approach for MAS modelling through OntoMAS.

• Section 5 shows our evaluations on this proposed ontology for MAS modelling.

• Section 6 describes techniques for converting ontological models designed in OntoMAS

to programming code and the Onto2JaCaMo tool that materialises such techniques.

• Section 7 illustrates our empirical evaluations of the techniques and tool for ontology-

based MAS development.

• Section 8 presents our final remarks, summarises our previous publications, and dis-

cuss directions for future work.

28

29

2. THEORETICAL BACKGROUND

“All things are difficult before they are easy."

Thomas Fuller — (1608 - 1661)

The design of complex systems, such as MAS, should consider models that are

clear to communicate, provide support during programming, and allow reuse and reasoning

over the specification [FBV17]. Therefore, we propose and investigate the use of ontologies

to achieve such goals, as they can also offer code generation features and help in organising

the many concepts involved in the modelling, development, and verification of MAS. Since

ontology will be playing the role of meta-model for MAS, this Section briefly explains the

main topics in the areas of MDE, ontology, and MAS that have led us to this thesis.

2.1 Model-Driven Engineering

Models help us to understand a complex problem and its potential solutions through

abstraction [Sel03]. Therefore, it seems obvious that software systems, which are often

among the most complex engineering systems, can benefit greatly from using models and

modelling techniques. MDE is related to the design and specification of modelling lan-

guages [AK03, SWGP10]. In short, MDE provides abstractions and notations for better

understanding and easier modelling applications of a specific domain. It is usually applied

to: (i) produce high-quality results quickly; (ii) reuse solutions effectively; (iii) specify complex

structured information concisely; (iv) design rich textual and graphical notations; and (v) im-

plement powerful runtime solutions. One of the basic principles of MDE is to consider models

as first class entities and any software artifact as a model or as a model element [Béz06].

MDE employs models as the cornerstone of software development processes [GNFC12] in

order to improve productivity, portability, interoperability, maintenance, and so on. Also, it

is possible to gradually evolve an abstract software model into the final product through a

process of incremental refinement, without requiring a change in skills, methods, concepts,

or tools [Sel03]. However, the models must be formally connected to the actual software

to ensure that programmers are following the design decisions captured in a model during

implementation [Sel03].

Models are used to reason about a problem domain, design a solution in the solu-

tion domain, and they are considered effective if: (i) they can serve as a basis for implement-

ing systems; and (ii) they make sense from the point of view of a user that is familiar with the

domain [Roe12]. To be useful and effective, an engineering model must possess, to a suffi-

cient degree, the following five key characteristics: abstraction, understandability, accuracy,

30

predictiveness, and inexpensiveness [Sel03]. Abstraction is almost the only available means

of coping with the complexity of the demand for ever-more sophisticated functionality from

our software systems. Since a model is always a reduced rendering of the system that it rep-

resents, the essence can be more easily understood when details considered irrelevant for a

given viewpoint are removed or hidden. Understandability is a direct function of the expres-

siveness of the modelling form used (expressiveness is the capacity to convey a complex

idea with little direct information). A model with accuracy must provide a true-to-life repre-

sentation of the modelled system’s features of interest. A predictiveness model should be

able to correctly predict the modelled system’s interesting but nonobvious properties, either

through experimentation (such as by executing a model on a computer) or through some

type of formal analysis. Finally, a model is considered inexpensive when it is significantly

cheaper to construct and analyse than the modelled system.

One of the most relevant MDE concept is the idea of meta-models, which are mod-

els to describe models. Meta-models define general concepts of a given problem domain

and their relationships [GNFC12], and their advantage in the development process is the

higher abstraction level to work with. This role of meta-models is also played by ontologies,

as we highlight next in subsection 2.2. Software models capture relevant characteristics of

a software artifact to be developed, yet, most often these software models have no formal

semantics, or the underlying (often graphical) software language varies from case to case

in a way that makes it hard if not impossible to fix its semantics [SWGP10]. Also, it is not

always clear how the concepts used to express the models are mapped to the underlying

implementation technologies such as programming language constructs, operating system

functions, and so forth [Sel03]. This semantic gap is exacerbated if the modelling language

is not precisely defined, leaving room for misinterpretation. Since ontology languages are

described by meta-models and allow for describing structural and behavioural models, they

provide the capability to be applied as software modelling languages [SWGP10].

This subsection provided several definitions for the most relevant terms backed up

by different authors from the MDE community. We also began to introduce concepts from

the area of ontology, which is now addressed in the next subsection.

2.2 Ontology

Ontology is defined as an explicit specification of a conceptualisation [Gru93],

where a conceptualisation is an abstract, simplified view of the world that we wish to repre-

sent for some purpose. Some essential properties of ontologies are: (i) ontologies describe

31

a specific domain1; (ii) ontology users agree to use the terms consistently; (iii) ontology

concepts and relations are unambiguously defined in a formal language by axioms and defi-

nitions; (iv) relationships between ontology concepts determine the ontology structure (e.g.,

hierarchical or non-hierarchical2); and (v) ontologies can be understood and processed by

computers [HWDC09].

Ontology has different meanings within different contexts, e.g., in Philosophy and in

Metaphysics ontology encompasses nature and existence, beings and relation between be-

ings [HWDC09]. The resulting knowledge is explicit, shared, and understood by humans. In

Computer Science and in Artificial Intelligence, ontology is used to formally and explicit rep-

resent shared domain knowledge through definitions, axioms of concepts, and relationships

between concepts [HWDC09]. This work refers to ontology in the context of Computer Sci-

ence and Artificial Intelligence, in which the main difference is that ontologies are designed

to be machine-understandable.

Ontologies are knowledge representation structures, usually based on Description

Logics [BHS09], composed of concepts, properties, individuals, relationships, and axioms.

A concept (or class) is a collection of objects that share specific restrictions, similarities, or

common properties. A property expresses relationships between concepts. An individual

(instance, object, or fact) is an element of a concept. A relationship instantiates a property

to relate two individuals. Finally, an axiom (or rule) imposes constraints on values of con-

cepts or individuals normally using logic languages (that can be used to check ontological

consistency or infer new knowledge).

Both a meta-model and a modelling language are means of describing how a do-

main could be instantiated. Thus, a model is an instantiation or a specific case that follows

an explicit meta-model or modelling language. Ontologies are formalised in a language as

well, and they can be created from scratch, or include and extend some others as starting

point. An ontology can be seen as a conceptualisation, usually referred as terminological

components (TBox). Then, an ontology can be populated/instantiated with facts or asser-

tions, usually called assertion component (ABox), which is associated with a terminological

vocabulary. Shortly, TBox statements describe a system in terms of controlled vocabular-

ies, for example, a set of classes and properties; and ABox are TBox-compliant statements

about that vocabulary.

Ontology empowers the execution of semantic reasoners that provide functionali-

ties such as consistency checking, concept satisfiability, classification, and realisation. In

other words, reasoners are able to automatically infer logical consequences from a set of

axioms. Pellet [SPG+07] is one example of a semantic reasoner implementation over OWL

1This definition that was cited claims that an ontology describes a specific domain, which means a part of

knowledge in some degree. It does not claim that all ontologies are domain specific, since there are the so

called upper level (or foundational) ontologies.
2The generalisation/specialisation relationship (i.e., “is-a” relationship) between two concepts is an example

of a hierarchical relationship between concepts.

32

ontologies. OWL (Web Ontology Language) is a language for processing web information

and a semantic web standard formalism to explicitly represent the meaning and relationships

of terms [BvHH+04].

We consider that these essential properties have a role to play in the process of

modelling complex systems, and models based on these underlying properties may be ex-

plored in many different ways. More specifically, this thesis is interested in investigating

the use of ontologies as an integrated global model for designing and programming MAS.

Therefore, we explain the research area of MAS in sequence.

2.3 Multi-Agent Systems Development Platforms

Agents are reactive systems that can independently determine how to best achieve

their goals and perform their tasks [BHW07] while demonstrating properties such as au-

tonomy, reactivity, proactiveness, and social ability. Agents are situated in an environment,

where they can perceive and modify it, and they should be able to exchange information,

cooperate, and coordinate activities. MAS development integrates aspects from different di-

mensions (e.g., agent, environment, and organisation) that are addressed by different tech-

nologies. For example, MAS programming in JaCaMo [BBH+13] requires the development

of code in Jason, CArtAgO, and Moise. These three distinct formalisms and starting points

for MAS development make desirable a single model combining all MAS’s dimensions which

can also offer an abstraction to such programming platforms. However, current AOSE mod-

els and methodologies (such as Prometheus [PW03]) are deficient in at least one of the

following areas of MAS development: agent internal design (design of agent mental con-

structs such as beliefs, goals, plans, and actions), interaction design (design of interaction

protocols and exchanged messages), or organisation modelling (design of acquaintances

and authority relationships amongst agents or agents’ roles) [TL08]. One problem in this

scenario is that such characteristics can appear only hard-coded in MAS programming plat-

forms without being fully and explicit contemplated in high-level models of MAS [FBV17].

The interest in using ontology with agent systems is not recent. For example, the

InfoSleuth project in the late 90’s used ontologies to model agents and included explicit

ontology agents [BBB+97]. Ontologies in InfoSleuth were used to specify both the infras-

tructure underlying the agent-based architecture and to characterise the information content

in the underlying data repositories. According to its authors, their motivations for using on-

tologies were two-fold: (i) capturing and reasoning about information content (e.g., database

schema, conceptual models); and (ii) specification of the agent infrastructure (e.g., agent

configurations, workflow specifications). The ontology agents managed the semantics of

the domain/environment in which they operate, and the ontology models for agents describe

their knowledge and attributes. One of our main differences is that the ontology models

33

in that paper had been used for interoperability, but not for supporting implementation like

the MDE approach in our work. Also, that work used technologies from that time, for ex-

ample, their agents were implemented using Java, which, currently, is not considered an

agent-oriented programming language.

In this work, we focus on the JaCaMo [BBH+13] platform for MAS programming,

which integrates: autonomous agents coded in Jason [BHW07], shared distributed artifact-

based environments developed in CArtAgO [RVO06], and organisations of agents defined

in Moise [HBKR10]. Jason [BHW07] is an AgentSpeak language implementation that fo-

cuses on agent actions and mental concepts. Jason is an open source interpreter that offers

features such as speech-act based agent communication, plans annotation, architecture

customisation, distributed execution, extensibility through internal actions, among other fea-

tures. On the environment side of agent systems, CArtAgO [RVO06] is a platform to support

the artifact notion in MAS. Artifacts are function-oriented computational devices which pro-

vide services that agents can exploit to support their individual and social activities [RVO06].

Lastly, the specification of agents at the organisation level can be achieved using an or-

ganisation modelling language, such as Moise [HBKR10]. Moise explicitly decomposes the

specification of an organisation into its structural, functional, and normative dimensions.

Currently, we have separate approaches for addressing the modelling and pro-

gramming of MAS, resulting in gaps and conceptual divergences in AOSE [FBV17]. While

JaCaMo [BBH+13] is a programming platform that uses three different formalisms for coding

MAS, Prometheus [PW03] is an agent modelling approach but without applying or explor-

ing any formal ontologies as part of its technique. Therefore, in this work we investigate an

ontology-based MDE approach as an integrated global model of MAS’s main characteristics.

We also explore ways of using such model to support MAS verification and programming.

Although the advantages of ontologies for agents are clear, few MAS platforms currently

integrate ontology techniques [TL08, FBV17]. Limited ontological support is provided by the

AOSE methodologies since they do not incorporate ontologies throughout the entire sys-

tems development life cycle nor consider ways in which ontologies can be used to account

for interoperability and verification during design [TL08].

An important contribution of agent-oriented programming as a new paradigm was

to provide ways to help programmers in developing autonomous systems [BBH+13]. For

example, agent programming languages typically have high-level programming constructs

which facilitate (compared to traditional programming languages) the development of sys-

tems that are continuously running and reacting to changes in the dynamic environments

where such autonomous systems usually operate [BBH+13]. Agent-oriented paradigms are

normally used to develop very complex systems, where not only are many autonomous en-

tities present in a shared environment, but also they need to interact in complex ways and

need to have social structures and norms to regulate the overall social behaviour that is

expected of them [BBH+13].

34

In this context, JaCaMo was the first approach aimed at explicitly investigating the

integration of all the dimensions of MAS from a design and programming point of view: previ-

ously existing approaches have considered either only the agent–organisation dimensions,

or the agent–environment dimensions [BBH+13]. The combination of all these dimensions

of MAS into a single programming paradigm with a concrete working platform has had a

major impact on the ability to program complex distributed systems [BBH+13]. The authors

of JaCaMo pointed out, as future work, the desire for an integrated development environ-

ment to facilitate the process of design, development, and execution of JaCaMo applications,

potentially reusing and integrating existing Jason, CArtAgO, and Moise tools and technolo-

gies [BBH+13]. Thus, recognising the importance achieved by JaCaMo, this research direc-

tion is one of the motivations in this thesis. JaCaMo is the unique platform with the three

dimensions of MAS completely integrated and functional at the programming level, as far as

we known, despite being the first one to achieve all of these [BBH+13]. Thus, our proposed

techniques for modelling and code generation address the design of MAS with an eye on im-

plementations using JaCaMo as the target programming platform. For completeness, other

frameworks for MAS development are commented next. These other agent programming

languages provide some support for environments, or some organisational notions such as

roles, but without including a fully fledged organisational model and first-class environment

abstractions that are provided by JaCaMo.

The “Organization Oriented Programming Language” (2OPL) [DGMT09] is a rule-

based language that allows the programming of multi-agent organisations in terms of norms

and which is meant to be exploited in synergy with the agent programming language 2APL.

The combination of 2APL with 2OPL covers the dimensions of agent and organisation, how-

ever it lacks a clear description of how the organisation integrates with the agent level from

a practical programming point of view. Moreover, important abstractions for the environment

dimension are missing, since no effective integration between the organisation and environ-

ment dimensions is considered.

The Golem [BS08] agent platform allows the programming of both cognitive agents

and computational environments that are structured as non-cognitive objects organised into

“containers”. In other words, this platform covers the dimensions of agents and environ-

ments, but it lacks a clear description of organisations. It also do not explore how the organi-

sations would be integrated from a practical programming point of view. Recent work on that

approach is beginning to present the initial steps for extending Golem with norms to realise

norm-governed MAS [UBSA10].

JACK [Win05] is a cross-platform environment for building and running MAS. It is

built based on the BDI architecture, which is sound logical foundation, intuitive, and pow-

erful abstraction. JACK includes an agent-oriented programming language; a platform for

executing agents with infrastructure such as message marshalling and a name server; and

development tools including a design tool, a graphical plan editor and a number of debugging

35

views. JACK is entirely written in Java, which makes it portable and capable of running on

any device. According with [KB15], JACK was the first platform with support for capabilities

and hierarchical team structures. Although some elements from the organisation dimension

are presented in JACK, not all of them are represented. Also, the dimensions of agents,

organisations, and environments are not completely integrated.

JADE [BCG07], which stands for Java Agent Development Framework, is, as its

name indicates, a framework for programming agents fully implemented in Java. It simplifies

the implementation of MAS through a middleware that complies with the FIPA (Foundation

for Intelligent Physical Agents) specifications. The JADE system can be described from two

different points of view: (i) JADE is a runtime system for FIPA-compliant MAS, supporting

application agents whenever they need to exploit some feature covered by the FIPA standard

specification (message passing, agent life-cycle management, etc.); and (ii) JADE is a Java

framework for developing FIPA-compliant agent applications, making FIPA standard assets

available to programmers through object-oriented abstractions. In short, JADE is an open

source project that does address abstractions of agents, but important concepts of MAS,

such as from the dimensions of environments and organisations, are missing.

Surveys on agent-oriented development tools and agent platforms [PB09, KB15]

point out that most of these frameworks suffer from the strong heterogeneity of the MAS

field. This heterogeneity often leads to very specific approaches suitable only for one spe-

cific agent approach, e.g., a design tool for BDI agents only. From a Software Engineering

(SE) perspective, a methodology (including concepts, notations, a process, and techniques)

that guides practitioners in designing their systems is desired in agent-oriented approaches.

Such methodology must comply with the concrete agent platform that is used to create the

agent systems.

In practice, we observe that most AOSE approaches lack a standard and explicit

methodology, as highlights Figure 2.1, which was obtained from one survey [PB09] on agent-

oriented development tools. The authors Pokahr and Braubach [PB09] have defined that a

methodology is what gives the conceptual foundations for the modelling tools, and, similarly,

the architecture is what forms the conceptual foundation of programming languages. The

only methodology that this survey [PB09] had linked with the “SE Approach” called “AO” is

Prometheus, which is tied with JAL only, the language of JACK [Win05]. We have updated

this figure to include JaCaMo [BBH+13] and the approach being proposed in this thesis

on top of it. In order to situate the readers both on Figure 2.1 as well as on this thesis,

we observe that: (i) the OntoMAS methodology is fully detailed in Section 4; and (ii) the

Onto2JaCaMo, a development environment integrated with Eclipse, is addressed in Section

6. We have indicated Protégé [Mus15] as the modelling tool for our methodology, however

any other ontology editor could be an alternative to it for interacting with the OntoMAS ontol-

ogy. The term MAOP (Multi-Agent Oriented Programming) was obtained in the paper from

the authors of JaCaMo [BBH+13], so we used it as its architecture, and, based on that, we

36

have coined the term MAO (Multi-Agent Oriented) as the new paradigm of SE approach for

covering all these points.

Figure 2.1 – Agent-oriented IDEs (obtained and adapted from [PB09]).

This Section presented the background knowledge on the topics of MDE, ontology,

and MAS. We have highlighted that other platforms for MAS programming do not cover the

important features that JaCaMo provides. Also, we already started to link one research area

with each other, and the interconnections among them are explored with more detail in next

Section.

37

3. RELATED WORK

“The important thing in science is not so much

to obtain new facts as to discover new ways of

thinking about them."

Sir William Bragg — (1862 - 1942)

This Section shows the connections among MDE, MAS, and ontologies from three

viewpoints. First, we show the importance and advantages of models for MAS (subsec-

tion 3.1). Second, relations of MDE with ontologies are given (subsection 3.2). Third, uses

of ontologies in MAS are shown (subsection 3.3). This leads to the integration of all these

three topics, in which we analyse the use of ontology for modelling agent systems (sub-

section 3.4). Figure 3.1 illustrates how such combinations of topics are addressed in each

subsection in this chapter. Moreover, each of these topics in isolation was previously ad-

dressed in the background (Section 2) of this thesis: MDE in subsection 2.1, ontologies in

subsection 2.2, and MAS in subsection 2.3. For a summarised comparison of related work,

we refer to Table 3.1 at the end of the current Section, in which we also situate the research

in this thesis.

Figure 3.1 – Structure of subtopics in this Section of related work.

3.1 Model-Driven Engineering and Multi-Agent Systems

Several models and methodologies can be found in literature to formalise and de-

fine the processes of MAS design and implementation. For example, Prometheus [PW03] is

38

one of the most well-known MAS modelling methodology for developing intelligent agent sys-

tems. It defines a development process with associated deliverables proven to be effective in

assisting developers to design, document, and build agent systems based on concepts such

as goals, beliefs, plans, and events. Prometheus [PW03] contains three phases: system

specification, architectural design, and detailed design. It starts with the system specifi-

cation phase that focuses on identifying the basic system functionalities, along with inputs

(percepts), outputs (actions), and any important shared data sources. Then, the architec-

tural design phase uses the outputs from the previous step to determine which agents the

system will contain and how they will interact. Lastly, the detailed design phase looks at the

internals of each agent and how it will accomplish its tasks within the overall system. Among

future work for Prometheus [PW03] there is the introduction of social concepts to improve

its current models, however one of our recent papers [FCVB16] has indicated that these

improvements are not available yet in the latest official version of the Prometheus Design

Tool (PDT). Therefore, some aspects of MAS are not covered by the models of Prometheus,

which also does not explore the use of formal or explicit ontologies as part of its approach.

Prometheus is usually used as reference when MAS are combined with MDE in

literature. For example, the Prometheus AEOlus [UH14] allows the integrated development

of the three MAS dimensions (agent, environment, and organisation). It contributes with: (i)

a new meta-model that combines the meta-models of Prometheus and JaCaMo; (ii) a new

interactive incremental process based on the Prometheus process; and (iii) a code gen-

eration approach for JaCaMo based on this new meta-model. Prometheus AEOlus [UH14]

improves modelling, code generation, and reduces the conceptual gap between the analysis

and implementation phases. On one side, it extends Prometheus meta-models by including

concepts to consider the environment and organisation dimension of JaCaMo. On the other

side, it applies JaCaMo concepts to improve Prometheus development process to ensure

that concepts used during the design and analysis stages will be used in the implementation

stage. However, the proposed meta-models are not integrated with semantic technologies,

reasoners, ontologies, and neither used during MAS programming. We observe that the

code generation in Prometheus AEOlus [UH14] requires the refinement of entities in the

model to generate code (for JaCaMo components, i.e., Jason, Moise, and CArtAgO). Thus,

models designed in this approach must be refined to include platform-specific information,

and once the first version of the designed MAS code is generated, the models are no longer

used during the programming step to complete the MAS development.

Research in the direction of building tools for developing MAS through exploiting

MDE techniques have led to a new proposal [GNFC12] of using Ecore with Prometheus.

Ecore is used by the Eclipse Meta-modelling Framework to define meta-models, and that

work have applied it to develop the meta-model concepts specific to Prometheus. More

specifically, it has addressed the generation of MAS graphical editors based on the models

and how agent code generators can be developed from such visual models. In the end,

39

MAS programming code can be automatically generated from the models, ranging from

code skeletons to completely deployable products [GNFC12]. To demonstrate this claim,

templates have been created to automatically generate code in JACK language [GNFC12],

which uses the BDI model to represent the internal structure of its agents. Once the model

is converted to code, the developer must continue the MAS programming phase without

using the model. Similarly as we see in other related work, this approach does not explore

ontologies as part of such models and the MDE proposal does not present techniques for

being used during MAS coding.

New aspects of MAS for programming platforms are also created and proposed as

models. For example, a model specifying the interaction as a first-class abstraction to define

MAS with respect to agents, environments, interactions, and organisations [ZH14]. The in-

teraction allows the definition of the desired sequence of steps to achieve the organisational

goals (while the organisational goals provide information about what the agents need to do,

the interaction protocols provide a more detailed description about how to behave to achieve

them). More specifically, that work presents a conceptual model for the interaction compo-

nent, a programming language to specify the interaction, and how the proposed approach

may be integrated in the JaCaMo platform. Such contributions allow developers to model the

interaction in a separate component. Thus, the interaction does not need to be hard-coded

inside the program instructions of agents or other components [ZH14].

MAS-ML is a multi-agent system modelling language [dSdL03] that extends the

UML based on TAO (Taming Agents and Objects). The TAO meta-model defines the static

and dynamic aspects of MAS. New diagrams - Organisation and Role diagrams - have been

created due to the set of different elements and relationships defined in the TAO meta-

model that have been incorporated in the UML meta-model [dSdL03]. Also, UML diagrams

that already exist - Class and Sequence diagrams - have been adapted. Explanations about

these diagrams can be found as follows [dSdL03]:

• The Sequence diagram represents the dynamic interaction between the elements that

compose a MAS - i.e., between objects, agents, organisations, and environments.

• The extended Class diagram also represents agents and organisations together with

the relationships between them and classes as defined in TAO.

• The Organisation diagram models the system organisations identifying their habitats,

roles, and other elements - objects, agents, and sub-organisations.

• The Role diagram is responsible for clarifying the relationships between the agent

roles and object roles.

MAS-ML has as similarity with this thesis the fact of defining agent, organisation, and envi-

ronments as first order abstractions. However, our approach proposes to include the use of

an ontology as meta-model for the MAS. Also, MAS-ML claims that it would be easier to use

40

a programming language that considers these elements as first order abstractions to imple-

ment MAS-ML models [dSdL03]. While MAS-ML states as contribution “the mapping of the

design elements in the agent level of abstraction to a programming language” but without

determining a specific programming language, the research in this thesis emphasises the

use of JaCaMo for MAS development.

MDE with agent-based models can facilitate the implementation of methods and

tools for the development of MAS [PGSF06]. This subsection establishes links among MDE

with MAS and it shows that models are commonly used to generate code automatically,

but without making use of ontologies, or offering any type of model-based support during

the programming and verification steps. We believe that such models can play a role not

only in model transformation approaches that generate a first or skeleton version of MAS

code, but also being employed until the end of MAS development. However, moving from

agent models to implementation is, currently, not fully addressed by most agent-oriented

methodologies in a systematic way [PGSF06], which leaves a gap between design and

implementation. Also, we argue that while many modelling methodologies were proposed

for agent development platforms in the past, they are not sufficient for the new and emerging

techniques in agent programming, such as dealing with the multiple abstraction levels and

not focusing only on the agents as individuals [FCVB16]. The approaches presented in this

Section so far do not relate the models with ontologies in the areas of AOSE. In further

subsections, we present the current research in this direction, but first the next subsection

discusses relations of MDE with ontologies from a general viewpoint (i.e., without focusing

in the specific context of MAS).

3.2 Model-Driven Engineering and Ontologies

None of the approaches in MDE we saw in previous subsection explores ontolo-

gies for improving MAS modelling. Now we present an analysis of the relations of MDE with

ontologies. Often, models are specified by instantiating meta-models. The definitions we

found [AGK06] claim that “all ontologies are models, but not all models are ontologies”, how-

ever “there is no widely accepted definition of what distinguishes models from ontologies”.

These two areas are, superficially, very similar, and in fact are sometimes visualised using

the same language (e.g., UML). To better characterise their differences, we observe that

models tend to use the close world assumption and focus on realisation issues, while on-

tologies usually rely on the open world assumption and focus on capturing abstract domain

concepts and their relationships [AGK06].

Also, ontologies and meta-models are often designed with different goals in mind

[KKK+06]. For example, meta-models prove to be more implementation-oriented as they

often bear design decisions that allow producing sound, object-oriented implementations.

41

Due to this, language concepts can be hidden in a meta-model, but they have to be made

explicit in an ontology [KKK+06]. In fact, there are proposals to create ontologies from meta-

models, such as the lifting procedure [KKK+06], which was designed to achieve semantic

integration in modelling languages.

Other research directions rely on exploring these areas in interconnected ways,

which is, for example, the application of MDE with ontology technologies [SWGP10]. Since

OWL 2 has not been designed to act as a meta-model for defining modelling languages,

Staab et al. [SWGP10] show how to build such languages in an integrated manner by bridg-

ing pure language meta-models and OWL in order to benefit from both approaches.

However, MDE and ontologies differ in some other points [AGK06] such as: (i)

ontologies are generally used for run-time knowledge exploitation while models are not in-

tended to contain instance data or be accessible at run-time; (ii) ontologies usually support

“reasoning” while models cannot (or do not); and (iii) ontologies are expected to be repre-

sented with well-defined semantics in a language like OWL while models in a less precise

language like UML. Atkinson et al. [AGK06] do not claim that models do not contain instance

data, but that models are not intended to contain it. Our goal in mentioning this is to ex-

pose several different authors’ viewpoints in these areas since it is acknowledged that some

definitions remain ambiguous and confusing.

Although the research areas of MDE and ontologies have been developed by two

different communities, important synergies can be achieved by combining them [FBV17].

However, there are open research challenges for ontological approaches to model engi-

neering, e.g., in which tasks ontologies and software models can be optimally used together

and how ontologies should be integrated into MDE. Such investigations will lead to ways in

which they can be made compatible and linked so as to benefit both communities.

This subsection discussed relations of MDE with ontologies from a general view-

point, i.e., without focusing in the specific context of MAS. Next, in subsection 3.3, we show

approaches where ontologies are used in and for MAS, but without addressing modelling

issues. We highlight these two different roles played by ontologies in MAS: situations where

ontologies are used without addressing modelling issues, and situations where ontologies

are considered for AOSE. This last case, which has most relation with our thesis, namely

the uses of ontologies for MAS modelling, is addressed in subsection 3.4.

3.3 Ontologies and Multi-Agent Systems

One of the first approaches in literature to consider ontologies to enhance an agent-

oriented programming language was AgentSpeak-DL [MVBH06]. However, AgentSpeak-DL

focuses on using ontologies during agent reasoning, instead of modelling aspects of MAS

in ontologies. AgentSpeak-DL extends agents’ belief base with Description Logic (DL), in

42

which the belief base includes: (i) one immutable TBox (terminological box, or conceptuali-

sation) that characterises the domain concepts and properties; and (ii) one ABox (assertion

box, or instantiation) with dynamic factual knowledge that changes according to the results

of environment perception, plan execution, and agent communication. AgentSpeak-DL ap-

proach enriches the agent belief base with the definition of complex concepts that can go

beyond factual knowledge [MVBH06]. The advantages pointed out of integrating agents and

ontologies are [MVBH06]: (i) more expressive queries in the belief base, since results can

be inferred from the ontology and thus are not limited to explicit knowledge; (ii) refined belief

update given that ontological consistency of a belief addition can be checked; (iii) the search

for a plan to deal with an event is more flexible because it is not limited to unification1, i.e.,

it is possible to consider subsumption relationships between concepts; and (iv) agents can

share knowledge using ontological languages such as OWL. Although such advantages en-

able new reasoning mechanisms for MAS by means of ontologies, our work investigates a

different research direction in which ontologies are used as part of AOSE methodologies to

aid modelling and implementation of agent systems.

JASDL [KB08] also merges agent belief base and ontological reasoning since it

implements AgentSpeak-DL to provide Jason agents with ontology manipulation capabilities

using the OWL API. Agent programmers benefit from features such as plan trigger gen-

eralisation based on ontological knowledge and the use of such knowledge in belief base

querying [KB08]. Some Jason modules were altered to implement JASDL such as: the be-

lief base was extended to partly resides within an ontology ABox, which, combined with a

DL reasoner, facilitates the reuse of available knowledge in ontologies (to increase the in-

ferences that an agent can make based on its beliefs and assure knowledge consistency);

the plan library to enable enhanced plan searching; and the agent architecture to augment

it with message processing to obtain semantically-enriched inter-agent communication.

CooL-AgentSpeak [MAB+14] is an extension of AgentSpeak-DL with plan exchange

and ontology services. It implements a CArtAgO artifact functioning as an ontology reposi-

tory tool which stores a possibly dynamic set of ontologies and offers related ontology match-

ing/alignment features. It searches for ontological relevant plans not only in the agent’s local

plan library, but in the other agents’ libraries too, according to a cooperation strategy not

based solely on unification and subsumption relations between concepts, but also on ontol-

ogy matching. In short, CooL-AgentSpeak [MAB+14] performs cross ontological unification

for agents that do not disclose their ontologies to each other (that cooperate while preserving

their privacy).

One of our own work is related with this thesis. We have implemented a mechanism

for agents to interact with ontologies [FPH+17]2 that is coded in a CArtAgO artifact, so any

1The traditional plans’ unification relies on pattern matching mechanisms based only on syntax and lexical

approaches for comparing plans. Thus, semantics is not considered to infer that a plan could be attempted in

a given situation.
2[FPH+17] is a journal extended version of the paper [FPH+15].

43

agent platform that supports CArtAgO is able to make use of it. Such artifact allows agents

the ability of interacting with OWL ontologies, so that ontologies may be used in the devel-

opment and execution of MAS. The knowledge of agents is then increased from its standard

knowledge representation mechanism (Jason, for example, uses a belief base) to any ac-

cessible OWL ontologies. Besides the gains on expressiveness, we have demonstrated ex-

perimental results in which the new approach for agents to represent their knowledge bases

brings (given some scenarios and configurations) advantages in terms of better execution

time and memory allocation. Others of our papers describe situations in which this artifact

for ontologies was used, for example to interact with an ontology that represents tasks in the

context of collaborative groups of agents [SPF+16], and when information from this ontology

was employed by agents to communicate and argue about task reallocations [PFS+15].

This subsection presented approaches for incorporating ontological reasoning in

agents. Although the advantages of using ontologies for agents are clear, few agent-oriented

platforms are currently integrated with ontology techniques [FBV17]. Next subsection fo-

cuses on examples of ontologies proposed for modelling agent systems.

3.4 Ontologies for Modelling Multi-Agent Systems

As far as we know, the use of ontology to support modelling, development, and

verification of MAS in the context of MDE is a new idea currently not fully explored in litera-

ture [FBV17]. We have found ontologies to represent only partial aspects of MAS, such as

an environment ontology [OVBdRC06], and an ontology for organisations of agents [Zar12].

Such ontology models are desirable for all dimensions of MAS at the same time, but these

levels have to be aligned so that they work as a common specification [FBV17]. This will

make possible to model, to reuse, and to extend a MAS in one dimension while maintaining

the others, which enables the designer to work without going into specifics of the program-

ming languages that define each dimension. In this context, a MAS can be better designed,

expressed, and communicated, and a specific modelled project can be more easily verified

and converted to code or to a formal verification system.

Environments play an essential role in MAS, and their semantic representation im-

proves the way agents reason about the objects with which they interact and the overall

environment where they are situated [OVBdRC06]. This is important because most agent-

oriented programming languages are weak in allowing the developer to model the environ-

ment within which the agents will execute [BDW06]. The use of an environment ontology

adds three important features to existing multi-agent approaches [OVBdRC06]: (i) ontolo-

gies provide a common vocabulary to enable environment specification by agent developers

(since it explicitly represents the environment and agent essential properties, defining envi-

ronments in ontologies facilitates and improves the development of multi-agent simulations);

44

(ii) an environment ontology is useful for agents acting in the environment because it pro-

vides a common vocabulary for communication within and about the environment (it allows

interoperability of heterogeneous systems); and (iii) environment ontologies can be defined

in ontology editors with graphical user interfaces, making easier for those unfamiliar with

programming to understand and design such ontologies.

In [OVBdRC06] an environment ontology is proposed based on environment as-

pects of agent programming technologies that is integrated into a platform for developing

cognitive multi-agent simulations. Thus, it can be used to specify environments and derive a

project-level, complete, and executable definition of multi-agent environments. An environ-

ment description is a specification of its properties and behaviour, which includes concepts

such as: objects (i.e., resources of the environment); agents (i.e., their “physical” represen-

tation in the environment that is visible to other agents); actions that each type of agent

can perform in the environment; reactions of the environment and objects when an agent’s

actions affect them; perception types available to each type of agent; and observable prop-

erties, that is, the information about the simulation to which observers (e.g., the agents) have

access.

In [OVBdRC06], the relationship between the environment and other MAS dimen-

sions was already foreseen, since they mention the intention of looking at higher-level as-

pects of environments, i.e., social environment aspects of agents, such as the specification

of social norms and organisations in agent societies. In fact, on the MAS organisation di-

mension, there is a semantic description of MAS organisations [Zar12] formalised in OWL

to specify an ontology for organisational characteristics of the Moise meta-model (structural,

functional, and normative levels). This approach helps agents in becoming aware, query-

ing, and reasoning about their social and organisational context in a uniform way. Also, this

work makes possible to convert between the ontology and the Moise specification, providing

more flexibility for modelling and developing agent organisations. This semantic description

of Moise [Zar12] provides agent-side reasoning, querying features, and benefits such as

increased modularisation, knowledge enriching with meta-data, reuse of specifications, and

easier integration. With the semantic web effort aiming to represent the information in se-

mantic formats, the MAS community can take advantage of these new technologies in MAS

development tasks such as to integrate organisational models, to monitor organisations, and

to analyse agent societies [Zar12].

3.5 Summary

A comparison among such related work and the research in this thesis is depicted

in Table 3.1. First, it shows that there are already models and MDE approaches for more

than one MAS dimension [PW03, dSdL03, GNFC12, UH14, ZH14], but without using ontolo-

45

gies, semantic reasoning, or employing the model during the programming step. Then, we

show that ontologies are applied to extend agents’ capabilities, but with other goals than the

modelling of MAS [MVBH06, KB08, MAB+14, FPH+17]. Lastly, when an ontology is used

for MAS modelling, only a part is modelled, such as the environment [OVBdRC06], or the

organisation [Zar12].

Table 3.1 – Comparing related work in the areas of MDE, MAS, and ontologies (adaptation

from Table published in [FBV17]).

Research Overview of the work Ontologies included MAS dimensions
modelled

MAS plat-
forms used

Model-Driven Engineering and Multi-Agent Systems

Prometheus

[PW03]

MAS modelling and de-

velopment methodology

No Agent, environment,

and organisation

JACK

Prometheus

AEOlus

[UH14]

Approach for MAS mod-

elling and programming

No Agent, environment,

and organisation

JaCaMo

MDE for MAS

development

[GNFC12]

Ecore meta-model of

Prometheus for MAS

development in Eclipse

No Agent, environment,

and organisation

JACK

Interaction

compo-

nent [ZH14]

Conceptual model and

programming language

for interaction aspects

No Interaction JaCaMo

MAS-ML

[dSdL03]

MAS modelling lan-

guage that extends UML

based on TAO

No Agent, environment,

and organisation

Unspecified

This thesis -

OntoMAS and

Onto2JaCaMo

An ontology for MAS

modelling and a tool to

aid in MAS programming

An ontology plays a key

role in the proposed ap-

proach for MDE of MAS

Agent, environment,

and organisation

JaCaMo

Ontologies and Multi-Agent Systems

AgentSpeak-

DL [MVBH06]

An approach for using

ontologies during agent

reasoning

A way for agents to rep-

resent knowledge and

interact with ontologies

Ontologies extend

agents’ belief base

with DL

AgentSpeak

JASDL

[KB08]

Jason implementation of

AgentSpeak-DL

Jason agents can repre-

sent knowledge and in-

teract with ontologies

Ontologies extend

agents’ belief base

with DL

Jason

CooL-

AgentSpeak

[MAB+14]

AgentSpeak-DL’s exten-

sion with plan exchange

and ontology services

Each agent has its pri-

vate ontologies

Ontologies extend

agents’ belief base

with DL

CArtAgO

and Jason

Ontology

CArtAgO arti-

fact [FPH+17]

An artifact for agents

to interact directly with

OWL ontologies

MAS platforms aligned

with CArtAgO have ac-

cess to any ontology

Agents may use

ontologies as their

knowledge sources

CArtAgO

and Jason

This thesis -

OntoMAS and

Onto2JaCaMo

Methodology in which

MAS are first modelled

in the given ontology

An ontology is the basis

of techniques for MAS

modelling and coding

Agent, environment,

and organisation

JaCaMo

Ontologies for Modelling Multi-Agent Systems

MAS env.

ontology

[OVBdRC06]

Ontology to specify and

derive definitions of

MAS environments

An ontology for mod-

elling characteristics of

MAS environments

Environment Unspecified

MAS org. on-

tology [Zar12]

OWL description of

Moise organisations

An ontology for mod-

elling concepts of organ-

isations based on Moise

Organisation Moise

This thesis -

OntoMAS and

Onto2JaCaMo

An ontology and a tool

for model-based devel-

opment of MAS

An ontology for mod-

elling elements of the

three MAS dimensions

Agent, environment,

and organisation

JaCaMo

46

Thus, we highlight that the scientific contribution of this thesis lies mainly in the use

of an ontology to address all dimensions of MAS in a simultaneous way. Also, although Table

3.1 summarises that some related work are modelling the same dimensions addressed in

our work, each work addresses the characteristics of MAS using a different degree of detail.

For example, the information about the “MAS dimensions modelled” summarised in Table 3.1

may be the same for two different approaches (e.g., this thesis and Prometheus [PW03]),

however, as we show in Section 5, there are differences and concepts that may be missing

in some dimensions, thus making one approach more complete than other. In this context,

our work differs in the sense of proposing a more comprehensive approach that is based on

the OntoMAS ontology.

Next Section explains the main point of our thesis which consists of an ontology

and a methodology for MAS modelling that was named OntoMAS. Later Sections present

our techniques and tool for model-based MAS development according with the proposed

modelling approach. Our research combines MDE with an ontology perspective for building

MAS, and we integrate concepts from different agent dimensions in a single framework, so

agent-oriented software engineers benefit from receiving a robust methodology and tool to

support the development of their systems with a comprehensive approach. In this context,

our research pioneers in covering all these issues of MAS modelling, programming, and

verification at the same time, while providing interesting benefits to agent developers, notably

the users of JaCaMo [BBH+13].

47

4. AN ONTOLOGY FOR MODELLING MAS: ONTOMAS

“We should be taught not to wait for inspiration

to start a thing. Action always generates

inspiration. Inspiration seldom generates

action."

Frank Tibolt — (1897 - 1989)

An ontology for defining the main abstractions of MAS, namely the concepts from

agents, environments, and organisations is proposed in this thesis. The underlying idea is

that the conception of a MAS project should start by its modelling in such ontology, which

we refer to as OntoMAS. This can be done by extending the ontology top-level concepts,

and adding new classes, instances and relationships in order to specify the corresponding

desired project to be implemented in terms of agent-oriented concepts. Our approach advo-

cates that a MAS should be first modelled based on this upper ontology of agent systems,

which uses a single formalism to encompass the global characteristics of AOSE platforms.

In these terms, OntoMAS can be seen as a language, a meta-model, a high-level con-

ceptualisation, or as a domain-independent model of varied agent systems in which agent

developers would use it to model/extend/instantiate their specific agent project [FBV17]. As

result from using the proposed OntoMAS methodology for defining a specific MAS project,

designers obtain an extended and instantiated ontology that may correspond to a project in

JaCaMo [BBH+13].

OntoMAS represents different MAS concerns while allowing to relate them, there-

fore offering advantages such as increased maintainability, usability, and extensibility for

MAS modellers and developers. The OntoMAS modelling methodology consists in creating

subclasses, instances, and relationships based on the concepts and properties provided by

the ontology, which can be done with any ontology editor. When using OntoMAS, a particular

MAS begins to be modelled by extending the proposed ontology, which is done by creating

new subclasses to its top-level concepts. Then, individuals are created in the process of

instantiating the extended ontology. From an instantiated model, it is possible to perform

reasoning and obtain an inferred specification. Then, a model specified using OntoMAS

may be used in our techniques for supporting MAS programming, which are embodied in

the Onto2JaCaMo tool. Such approach also allows to gradually refine from high-level ab-

stract views to elements directly available in concrete technical MAS programming platforms.

Figure 4.1 illustrates how OntoMAS and Onto2JaCaMo fit in the phases of AOSE. Currently,

any ontology editor tool, such as Protégé [Mus15], can be used to interact with OntoMAS

during the MAS modelling. For the MAS development, Onto2JaCaMo was implemented as

a plug-in for Eclipse [Bud04], the standard IDE for JaCaMo [BBH+13].

48

Figure 4.1 – AOSE methodology using OntoMAS and Onto2JaCaMo.

Our investigation is also related with the exploration of approaches and tools that

can apply models obtained from ontologies during the MAS coding step to offer support for

programming and the use of ontology reasoning to perform inferences and verifications in

a specified project of MAS. Section 6 of this thesis is specially dedicated to demonstrate

the techniques implemented in Onto2JaCaMo of how instantiated models of OntoMAS can

be applied to support the generation and development of MAS code. Our techniques em-

phasise the transformation of elements from ontology models into code for JaCaMo through

operations such as an initial conversion of ontology elements to code [FSP+15], or enabling

the drag-and-drop content from model to code [FBV17]. Advantages derived from such ap-

proach are techniques for: (i) integrating design and code; (ii) supporting MAS programming

with automatic code generation through model-based development; and (iii) performing ver-

ification with focus on the use of semantic reasoning and model checking.

In each of the following subsections we describe in detail the meanings of concepts

and properties represented in OntoMAS for each of its MAS dimensions. The conceptual-

isation formalised in OntoMAS was composed from the analysis and observation of sev-

eral AOSE approaches and platforms, however it is highly oriented to and integrated with

JaCaMo [BBH+13]. The concepts and properties in OntoMAS are grouped according to the

three MAS dimension previously discussed: agent, environment, and organisation. Through

this Section, we present the general guidelines for project conception using our approach,

and a comprehensive example specified in it that includes demonstrations of inferences ob-

tained from semantic reasoning. We refer to Appendix A for an extended, complementary,

and more detailed explanation on the guidelines for project conception using OntoMAS.

4.1 Agent Dimension of Multi-Agent Systems

From the agent dimension, we are not interested in defining any possible and

generic characteristics of any kind of agent, such as physical agents. Instead, we are in-

49

terested in specifying only the concepts of virtual agents that make sense in the context

of programming for this dimension. Thus, the OntoMAS ontology contains the following 6

top-level concepts to represent the agent dimension: Agent, Plan, Action, AgentGoal, Be-

lief, and Message. Next, we detail the meaning of these concepts, the meaning of making

subclasses to them, and the meaning of creating individuals for such concepts. The relation

of these elements with the code in JaCaMo is also provided, as well as simple examples

for contextualisation. Figure 4.2 summarises the main concepts and properties in the agent

dimension of OntoMAS.

Figure 4.2 – Concepts and properties in the agent dimension of OntoMAS.

A subclass of Agent represents a type of agent, such as for example, Player.

When defining a given concept as a subclass of Agent, this concept represents all individual

agents of that kind. Subclasses of Agent are usually found in JaCaMo as the .asl files. An

instance of a subclass of Agent represents an individual agent of that corresponding type,

such as for example playerJohn. There are classes in this dimension that can be applied just

by creating instances, which we argue that is the most simple way. However, the modeller is

allowed to create subclasses to achieve an additional layer of expressiveness.

50

A Plan is a procedure composed of actions and it is triggered inside agents. The

definition of each plan should be represented as an instance of the Plan concept. Thus, in-

stances of plans represent the specification of a plan, such as for example chooseMovement.

The specification of a plan is found in JaCaMo inside the .asl code of the type of agent that

contains such plan. From this modelling perspective adopted in OntoMAS, the designer

does not need to create subclasses of Plan, but this possibility is allowed.

There are two kinds of Actions represented in OntoMAS: ExternalAction and

InternalAction. An ExternalAction is what the agent does that affects the environment,

such as the act of opening a door. An InternalAction is how an agent act to manipulate

its mental state, for example, forgetting some belief. While internal actions may be defined

by local actions in the agent’s state, external actions may refer to performing operations of

artifacts that are situated in an environment. The definition of an action is represented by

creating an instance of Action, such as for example openDoor. Actions are usually found

in JaCaMo in the body of agents’ plans. Similarly with plans, the designer does not need

to create further subclasses of Action, but this possibility is allowed. For example, the

subclass openDoor could have two different instances according to different door handles,

openDoor − barhandle and openDoor − knobshandle.

An AgentGoal represents some agent individual desire to be achieved. Goals

can be in one of the two following types. An AchievementGoal represents a state of the

world (objective) that an agent can have intention to attain, such as having the door opened.

A TestGoal is a check on the agent’s beliefs in order to verify if a given belief holds, for

example, querying the belief about the door being closed. Both achievement and test goals

may fail, but for any plan that is using them in order to continue its execution and finish

with success, its goals must be completed. The definition of a type of goal that agents may

pursue is represented by creating an instance of AgentGoal, such as for example to achieve

doorOpened. Goals are usually found in JaCaMo inside code of agents (.asl files).

The Belief encodes the knowledge of agents, which can be one of the three types,

as follows. PerceptBeliefs are obtained from environment perception, for example, the

belief stoveLit to represent the state perceived from a device. AgentBeliefs are beliefs ob-

tained from some other agent, for example, when an agent is told by other about something.

SelfBeliefs are obtained by internal agent reasoning, for example, when an agent believes

in something but not because it was perceived from the environment nor it was told by other

agent. The definition of a type of belief is specified by creating an instance of Belief, such as

for example preferredMove, which can be a SelfBelief. Beliefs are usually found in JaCaMo

inside the code of agents (.asl files).

A Message is a communication that goes from one agent to another. The definition

of a type of message is represented by creating an instance of Message, such as for exam-

ple informLocation. Sending a Message may be a part of a plan in agents. The message

types correspond to which performative is part of the sender agent’s intention, for example,

51

if it is delegating a goal (AchieveMessage), informing a belief (TellMessage), requesting

a plan (AskHowMessage), etc. There are 9 different types that a message can assume,

each representing its illocutionary force. This is represented by the following concepts that

are subclasses of Message:

• AchieveMessage: sender intends receiver to try and achieve content.

• AskAllMessage: sender wants all of receiver’s answers to a question.

• AskHowMessage: sender wants all of receiver’s plans that are relevant for the trigger-

ing event content.

• AskIfMessage: sender wants to know if content is true for receiver.

• TellHowMessage: sender informs receiver of a plan.

• TellMessage: sender intends receiver to believe content to be true.

• UnachieveMessage: sender intends receiver to drop the goal content.

• UntellHowMessage: sender requests that receiver discard a certain plan.

• UntellMessage: sender intends receiver not to believe content to be true.

Table 4.1 summarises the object properties related with the agent dimension in

OntoMAS. We explain first the properties that involve the concept of Plan, which are simpler

to explain since this concept does not require subclasses. After that, we explain properties

involving subclasses and instances of the Agent concept.

Table 4.1 – Ontological object properties in the agent dimension.
Domain Property Range

Plan or Agent has-action Action

Plan or Agent has-goal AgentGoal

Plan is-triggered-by Belief or AgentGoal

Agent has-plan Plan

Agent has-belief Belief

Plan or Agent sends-message Message

Message has-receiver Agent

Plans may contain actions, which means that when a given plan is being executed,

its corresponding actions may be performed. This is represented by connecting instances

of these concepts using the has-action property, for example, chooseMovement has-action

openDoor. The same is true for plans that may start the pursue of goals, defined through

the property has-goal, as exemplified by chooseMovement has-goal doorOpened. Also about

plans, they may be triggered by an event involving a belief or a goal, which is given by the

property is-triggered-by to connect instances of these concepts. To indicate that a given

52

plan sends a specific message, the sends-message property may be used. There is no need

to specify for agents the has-action and sends-message properties if they were all specified

for plans, a general rule can make inferences to check if an agent contains plans that have

actions and send messages, in such case the agent will also present these properties too.

We refer to subsection 4.6 for more information about rules and reasoning over OntoMAS

models.

Some properties work with the concept of Agent as its domain or range. We have

explained that the Agent concept may have both subclasses (e.g., Player) and instances

(e.g., playerJohn). When it is desired to use a property to connect between instances, the

semantic is the same as explained in the previous paragraph. For example, agents may

have beliefs, as expressed by the has-belief property. If playerJohn has some belief, lets

call preferredMove, then these instances have to be connected using the mentioned has-

belief property. However, if all agents of that type (Player) have such belief, then a “subclass

of” restriction should be used in that concept. This is represented as: Player is a subclass of

has-belief value preferredMove. The same principles are applied to: the has-goal property,

which indicates the goals of agents; the has-plan for indicating the plans of agents; and the

sends-message property, which indicates which messages the agent sends.

To connect an instance of message with an instance of agent that should receive it,

the property has-receiver can be applied (e.g., informLocation has-receiver playerJohn). To

represent that all agents of a type (exemplified as Player) are receivers of a given message,

a rule may be used as follows:

Message(informLocation), Player(?p) −> has-receiver(informLocation, ?p).

This rule can be read as: the instance of Message called informLocation has all

instances of Player (represented by ?p) as receiver of such message. We refer to subsec-

tion 4.6 for more information about rules and reasoning over OntoMAS models. Next, we

explain the formalisation of the environment dimension.

4.2 Environment Dimension of Multi-Agent Systems

From the environment dimension, OntoMAS is not interested in defining any possi-

ble and generic characteristics of any kind of environment, such as physical environments.

Instead, it focuses on specifying only the concepts of virtual environments that make sense

in the context of programming for this dimension using JaCaMo, in other words the char-

acteristics of CArtAgO implemented environments. From the environment perspective, the

main concepts are the Spaces, Artifacts, Operations, and Percepts. This dimension contains

properties such as has-artifact, has-operation, and has-observable-property. Figure 4.3

summarises the main concepts and properties in the environment dimension of OntoMAS.

53

Figure 4.3 – Concepts and properties in the environment dimension of OntoMAS.

The OntoMAS ontology contains the following 4 top-level concepts to represent

the environment dimension: Artifact, Space, Operation, and Percept. Next, we detail the

meaning of these concepts, the meaning of making subclasses to them, and the meaning

of creating individuals for such concepts. The relation of these elements with the code in

JaCaMo is also provided, as well as simple examples for contextualisation.

Artifacts are resources that agents can interact with, thus, a subclass of Artifact

represents a type of artifact. For example, Computer may be a new concept that is an

Artifact subclass in order to represent all artifacts of that kind. Each type of Artifact is

found in JaCaMo as a Java class. Artifacts can be either the target (outcome) of agent

activities, or the tools used by agents as means to support their activities (consequently,

artifacts reduce the complexity of agents tasks’ execution). This new concept of Artifact

can be instantiated with individuals, such as homeComputer, so that it represents a concrete

instance of that artifact’s type. An instance of a subclass of Artifact represents a real object

of that type, which may be found in JaCaMo in the .jcm file that describes the initial artifacts

of a system, however other artifacts may be created after the initialisation of the MAS.

A Space represents the idea of workspaces where artifacts, agents, and some-

times even other spaces are situated. In simulations the environments are virtual, but they

can be employed to make an abstraction of physical ones, where it is sometimes expected

for the final deployment of agent systems. The concept of Space does not required to

include subclasses on it, just instances, which represents a concrete space, such as for ex-

ample classRoom. Spaces are initialised in JaCaMo at the .jcm file, but agents may make

reference to spaces in their code (the .asl files).

An Operation represents a procedure that artifacts provide for agents to perform

on them. For example, turnOn may be an instance of Operation. Operations are found in

JaCaMo as methods of the artifact that implements such procedures. Every instance of Ex-

ternalAction (from the agent dimension) that is invoked by an agent executes an operation

54

of an artifact’s instance, thus these concepts of Operation and ExternalAction are strongly

related. There is no need to create subclasses for Operation.

A Percept is some information available to be observed from artifacts, which can be

one of the two types: an ObservableProperty, which persists in the belief bases of agents;

or an ObservableEvent, which does not persist in agents’ belief bases. This differentiation

exists because sometimes it is interesting for agents to store information obtained from envi-

ronment perception, but in some cases this is not true. Thus, artifacts in CArtAgO have two

methods to provide information for agents. This can be exemplified as: if the observation

of temperature would be used only to trigger a plan, then temperature may be an instance

of ObservableEvent. However, if it is desired for agents that are observing the artifact to

obtain and persist the value of the temperature, then it should be an instance of Observ-

ableProperty instead. Instances of ObservableProperty are found in JaCaMo in the java

code of artifacts through methods provided by the CArtAgO API (such as defineObsProp-

erty, getObsProperty, and updateObsProperty) to manipulate them. An ObservableEvent

is generated from another method provided by CArtAgO (called signal).

Table 4.2 summarises the object properties related with the environment dimension

in OntoMAS. We explain first the properties that involve the subclasses and instances of the

concept Artifact. After that, we explain properties involving instances of the Space concept.

Table 4.2 – Ontological object properties in the environment dimension.
Domain Property Range

Space contains-artifact Artifact

Artifact or Space provides-operation Operation

Artifact or Space provides-percept Percept

Space has-subspace Space

If a characteristic affects all artifacts of a type, then it should be defined as a class

restriction, for example, to represent that all computers contain the operation to be turned

on, this would be an ontology restriction on the Computer concept that should be added

using the provides-operation value turnOn, with turnOn being an instance of Operation

and Computer a subclass of Artifact. The same principle is applied to the the provides-

percept property (e.g., Computer is subclass of provides-percept value temperature, with

temperature an instance of Percept). Thus, a subclass of Artifact should define which

operations the artifacts of this type provide, and which percepts can be obtained from them.

A characteristic that affects the artifacts at the individual level is defined in the relations of

individuals of Space, which we are shown next.

Examples of object properties that should be used to define characteristics of

spaces are contains-artifact and has-subspace. Spaces may contain artifacts, for exam-

ple, suppose that there is a space called home, modelled as an instance of Space, and

that there is an instance of the Artifact type Computer, lets call homeComputer, located in

this space. Then, home should have a relationship with homeComputer using the property

55

contains-artifact. Also, an space may contain other, for facilitating the representation of the

environment. This is represented by the has-subspace property, such as for example home

has-subspace livingRoom.

It can be inferred which operations and which percepts can be obtained from each

space based on which artifacts are located in such spaces. A rule may be used as follows:

contains-artifact(?s, ?a), provides-percept(?a, ?p) −> provides-percept(?s, ?p).

This rule can be read as: if the space s contains an artifact a, and a provides a

percept p, then s provides p. The same reasoning principle applies to operations of artifacts

that are located in some space. Moreover, another general rule about environments is that

the percepts and operations of subspaces are also provided by the spaces that contain them.

Next, we explain the formalisation of the organisation dimension.

4.3 Organisation Dimension of Multi-Agent Systems

In literature it is possible to find considerable research on ontology for representing

generic organisational characteristics [FBV17], however, it is inadequate to the needs and

goals of Onto2JaCaMo, which emphasises the concepts of organisations that make sense

in the context of programming for this dimension using JaCaMo, in other words the char-

acteristics of Moise implemented organisations. Thus, OntoMAS does not focus in defining

any possible and generic characteristics of any kind of organisation. The definition of some

concepts such as role, group, and so on, may differ from those work to ours, because of our

implementation-oriented approach for this specific viewpoint in this dimension.

Thus, the OntoMAS ontology contains the following 5 top-level concepts to repre-

sent the organisation dimension: Role, Group, OrganisationGoal, Mission, and Norm.

Exemplar properties in the organisation dimension are that Group contains-role Role, Mis-

sion has-goal Goal, and Norm targets-role Role. Next, we detail the meaning of these con-

cepts, the meaning of making subclasses to them, and the meaning of creating individuals

for such concepts. The relation of these elements with the code in JaCaMo is also provided,

as well as simple examples for contextualisation. Figure 4.4 summarises the main concepts

and properties in the organisation dimension of OntoMAS.

An organisational Role is a function that agents can adopt. A Role definition states

that agents playing that role are willing to accept the behavioural constraints related to it.

Roles are used during the definition of groups, and agents that adopt roles should be com-

pliant with some restrictions. Instances of Role should be create for each definition of a

role in the organisation, such as for example, buildingCompany. The definitions of roles are

found in JaCaMo in the XML file corresponding to Moise, and the code of agents in Jason

can make reference to such roles. There is no need to create subclasses of Role.

56

Figure 4.4 – Concepts and properties in the organisation dimension of OntoMAS.

A subclass of Group represents a type of group. For example, HouseBuilderTeam

may be a new concept that is a subclass of Group, which represents all groups of that kind.

The definition of groups can be found in JaCaMo in the XML that specifies an organisation

in Moise. This new concept can be instantiated, e.g. johnsHouseBuilderTeam, so that it

represents instances of that groups’s type, in other words, concrete groups. Instances of

groups can be found in JaCaMo in the .jcm file, and the code of agents in Jason can make

references to those groups.

An OrganisationGoal represents an organisational objective to be achieved. For

each goal of this kind to be represented, an instance must be created for this class. Thus,

there is no need to create subclasses in the OrganisationGoal concept. An instance of

OrganisationGoal makes reference to a goal at the organisational level, such as for ex-

ample houseBuilt. Instances of this type are found in JaCaMo in the file that specifies an

organisation in Moise, and the code of agents in Jason can make references to organisation

goals (for example, agents may have plans to act when a goal is assigned to them from the

organisation).

A Mission is an structured mean composed of organisational goals. The organ-

isation functional dimension specifies how global collective Organisation Goals should be

achieved, i.e., how they are decomposed in global plans, grouped in coherent sets (mis-

sions) to be individually distributed to agents. An example of Mission can be the instance

managementHouseBuilding, which is used for coordinating the execution of organisational

goals. Missions are defined in the XML file of the Moise part of a JaCaMo project. There is

no need to create subclasses in the Mission concept.

57

A Norm is a regulation over the organisational behaviour, which can be one of the

three types: an ObligationNorm is a norm that must be done; a PermissionNorm is a

norm that is allowed (not prohibited); or a ProhibitionNorm is a norm for something de-

fined as forbidden. The normative dimension binds the structural level with the functional

one to specify role’s permissions, prohibitions, and obligations for missions. Each new norm

should be an instance of one of these concepts. One example of norm may be the in-

stance buildingCompanyContractualObligation, of the concept ObligationNorm, to define

that some role in the system is obligated to fulfil a given mission. Instances of norm are

defined in the Moise organisation files of a JaCaMo project, and there is no need to create

subclasses in the Norm concept, or to any of its three already defined subclasses.

Table 4.3 summarises the object properties related with the organisation dimen-

sion in OntoMAS. If a characteristic affects all groups of a type, then it should be defined

as a class restriction, thus representing that all groups of that kind have that specific char-

acteristic. For example, all soccer teams have a minimum of 5 soccer players defined as

an ontology restriction on the SoccerTeam concept should be added as contains-role min 5

SoccerP layer, with SoccerP layer being an instance of Role, and SoccerTeam a subclass of

Group.

Table 4.3 – Ontological object properties in the organisation dimension.
Domain Property Range

Group contains-role Role

OrganisationGoal contains-subgoal OrganisationGoal

Role extends-role Role

Mission has-goal OrganisationGoal

Norm targets-mission Mission

Norm targets-role Role

A Role may be an specialisation of another one, thus, the property extends-role

may be used to define hierarchy among instances of Roles, where each instance defines a

type of role. Following the example of an organisation to build a house, we can specify that

painterCompany extends-role buildingCompany.

Instances of organisation goals can be related among themselves to define com-

position characteristics using the object property contains-subgoal, which specify that a goal

is composed of some other (sub)goals. This is done to decompose a bigger goal into

other goals that are easier to coordinate or distribute in the MAS. For example, houseBuilt

contains-subgoal plumbingInstalled, with both individuals as OrganisationGoal instances.

Several instances of goal may be part of a Mission, so, a Mission’s instance that

contains goals should use the has-goal object property to specify its required goals. One

example of this is that the mission managementHouseBuilding has-goal houseBuilt.

The Role that is being regulated by a Norm is specified through the targets-role re-

lationship, and its related Mission is defined with the property targets-mission. Following the

58

example of the ObligationNorm instance called buildingCompanyContractualObligation, it

may be defined with the following relationships: targets-role buildingCompany, and targets-

mission managementHouseBuilding.

Next, we explain the integration of these three dimensions through the use of con-

cepts, properties, and rules that connect elements from different dimensions.

4.4 Connecting Agents, Environments, and Organisations

The classes and properties in OntoMAS are modelled in three sub-ontologies, one

for each dimension: agent, environment, and social organisation (subsections 4.1, 4.2, and

4.3, respectively). The integration and connections among concepts in the dimensions of

OntoMAS are encoded by means of concepts, object properties, and rules which determine

how elements are allowed to relate among each other. Figure 4.5 summarises properties

for connecting concepts from the three different dimensions of OntoMAS.

Figure 4.5 – Main properties for integrating concepts of OntoMAS dimensions.

Table 4.4 lists object properties for connecting concepts from the different dimen-

sions of OntoMAS. To specify the location of instances of agents in the spaces from the

environment dimension, the property is-in may be used. For example playerJohn is-in

classRoom. The property is-focused connects an agent with an instance of artifact in which

59

that agent is focused, such as playerJohn is-focused homeComputer. Then, some proper-

ties may be obtained by inference over elements from different dimensions. If an agent (?a)

is in a space (?s), and this space provides some percept (?p), then this agent can have such

percept (?a can-perceive ?p). This is specified through the following rule:

is-in(?a, ?s), provides-percept(?s, ?p) −> can-perceive(?a, ?p).

When relating concepts from the dimensions of agent and organisation, we may

desire to specify that a given agent is adopting a role. This may be done with the property

adopts-role. If a characteristic affects only some individuals of a group, then it should be

defined as an object property in those affected instances. In this case, for example, if the

redSoccerTeam contains the playerJohn agent, then these instances should be related using

the object property contains-agent.

Table 4.4 – Ontological object properties integrating concepts of different MAS dimensions.
Domain Property Range

Agent is-in Space

Agent is-focused Artifact

Agent can-perceive Percept

Agent adopts-role Role

Group contains-agent Agent

Next, we comment a different example of an OntoMAS modelling possibility for

completeness.

4.5 An example of MAS modelled based on OntoMAS

This subsection provides a detailed example of how a given MAS can be modelled

on the basis of the OntoMAS ontology. Although the subsections 4.1, 4.2, 4.3, and 4.4

already have introduced examples while explaining the concepts and properties in each

dimension of the ontology, we found it interesting to mention this example that is more unified

towards an unique scenario that was recently published in one of our papers [FBV17]. The

scenario exemplified in this subsection, besides complementing our explanations, already

introduces some examples on the topic of ontological reasoning over OntoMAS models,

which is further addressed in subsection 4.6.

Consider a soccer game scenario to be designed and implemented from an agent-

oriented point of view. In this scenario there are two different types of agents: players and

coaches. Player agents can perform actions such as moving in the soccer field, or passing

the ball. The coach can send messages to player agents in order to inform which roles they

should adopt in each moment of the match. The environment is the soccer field, where all

60

agents are situated. Agents in the soccer field environment can perceive things such as

the ball position, and the match score. A team is an organisation, composed of a group

of one coach and several players. The players can play different roles, such as defender,

striker, and captain (or leader). For these roles, different missions may be assigned, such

as defending or attacking. This brief specification addresses concepts of each one of the

three MAS dimensions. Next, we illustrate how to formalise it on the basis of extending and

instantiating OntoMAS.

Figures 4.6, 4.7, and 4.8 illustrate, respectively, examples from the agent, the en-

vironment, and the organisation dimensions. These examples contemplate how subclasses

should be created and instances have to be added considering the soccer scenario spec-

ification. These steps have been previously referred as extending and instantiating the

OntoMAS. Both the original elements from OntoMAS and the subclass extensions are rep-

resented by rectangles, while the instances are illustrated by the diamonds. In Figure 4.6 we

can see that agents have two types in this MAS specification, therefore two subclasses of

Agent were created: Player and Coach. We included two instances of Players to exemplify

how to make reference to individual agents (named player1 and player2). Each instance of

a subclass of the agent concept represents a concrete agent in the system, whereas its type

is specified by its class. Moreover, two types of Actions are defined as subclasses of the

Action concept: Move and PassBall.

Figure 4.6 – Agent example (adaptation of image published in [FBV17]).

The examples of environment characteristics in this MAS are depicted by the sub-

classes and instances illustrated in Figure 4.7. For example, the subclass SoccerField rep-

resents a type of Space in which our agents are situated. A concrete individual of this type

is specified by the instance soccerField1. One type of Artifact (i.e., resource) that exists in

the environment for agents to interact with is defined by the subclass Ball, whereas ball1 is

assigned as a valid instance of it. The subclasses Score and BallPosition illustrate types of

61

Observable Properties that resources may provide to agents, whereas an instantiation with

values for these properties (for beginning the MAS simulation) is represented by score1 and

ballPosition1.

Figure 4.7 – Environment example (adaptation of image published in [FBV17]).

Figure 4.8 shows subclasses and instances to represent organisation character-

istics of this MAS. Two subclasses specify types of Missions: Defending and Attacking.

Instances of these subclasses, such as attacking1 and defending1, define an assignment of

that Mission type to an agent. The types of Roles are given by the following three subclasses:

Defender, Striker, and Captain. Instances of these subclasses of Role (e.g., defender1, de-

fender2, striker1, captain1) define which agents are playing the corresponding roles. This

example shows how to encode part of one possible strategy for modelling organisational

characteristics of agent systems. However, other strategies are possible and would result in

different designs and implementations for this scenario. The modelling requires also the cre-

ation of relationships among the individuals, and the inclusion of some other axioms, which

our example illustrates by using object properties and restrictions over the subclasses.

Figure 4.9 illustrates in more detail how such example can be specified using

screenshots obtained directly from the Protégé [Mus15] ontology editor1. We have adopted

Protégé since it has become the most widely used software for building and maintaining

ontologies [Mus15]. We suggest the use of Protégé to interact with OntoMAS, however any

other ontology editor could be an alternative to it. As already explained, the desired MAS

is specified and modelled on top of the elements provided by the proposed OntoMAS ontol-

ogy. This is done by, for example, adding new classes, refining concepts, creating instances,

1Available open source at http://protege.stanford.edu/

62

Figure 4.8 – Organisation example (adaptation of image published in [FBV17]).

asserting properties, and so on. After using any ontology editor for modelling the MAS,

the resulting OWL file can be employed for several purposes, such as for example, in the

Onto2JaCaMo tool, detailed in Section 6, for supporting agent-oriented programming using

a given ontology-based specification.

The left-hand side of Figure 4.9 illustrates the subclasses hierarchy, with emphasis

on describing the Player concept. This part states the actions that players may execute,

an environment where players are situated, and instances of this subclass. The classes

Coach and Player represent types that individual agents can assume. Thus, as shown in

Figure 4.9, they were created as subclasses of Ag_Agent. This figure also illustrates some

characteristics for the Player concept such as players being able to execute the actions of

passing the ball and moving (this part is defined using the “SubClass of” restrictions on the

concept Player), and which individuals are of the type Player (e.g., the members player1

and player2). The environment where the agents are situated is specified using a relation

that connects the Environment and Agent concepts: the property EA_is-in from Ag_Agent

to Env_Space. In this case, there is a restrictions for specifying that all players are situated

inside the space defined as soccerField1. This situation exemplifies the use of a relationship

that integrates instances of concepts from two dimensions (Environment and Agent).

The right-hand side of Figure 4.9 shows details about individuals and relationships

that are asserted or inferred to some of these individuals. The inferences obtained by the

execution of semantic reasoning over this example are shown in this figure inside dashed

rectangles (while the asserted information is in bold). It is asserted that the soccerField1

instance has an artifact called ball1, and the defined rules allow the inference that this space

contains the observable properties of ball position and score. Since player1 is explicitly

63

Figure 4.9 – Subclasses of agent with some conditions, instances, and rules in the ontology

with asserted and inferred properties (first published in [FBV17]).

defined as an individual of Player, reasoners can use class restrictions of Players to imply

its location (soccerField1). Also, rules support the inference of which observable properties

this individual agent can perceive because of its location. These rules, which are shown

at the bottom of Figure 4.9, use an extension for OWL called SWRL (Semantic Web Rule

Language). Rules can be inherited from the base ontology, and new ones can be added

particularly to a specific extension and instantiation when defining a desired MAS scenario

(these are in bold). Next, in Subsection 4.6, we explain in more detail this part of using

semantic reasoning and rules in SWRL to obtain inferences over OntoMAS models.

4.6 Ontological Reasoning over OntoMAS Models

Model verification refers to the processes and techniques that the model developer

uses to assure that his or her model is correct and matches any agreed-upon specifications

and assumptions [Car02]. OntoMAS can be explored with its available reasoning mecha-

nisms to implement model verification in the context of MAS [FBV17]. The literature reports

that most practical approaches for verification of MAS are done on code, and most of the

work done on model checking within the MAS research area is quite theoretical [BDW06].

However, there are approaches that use existing model checkers, typically to check proper-

ties of particular aspects of a given MAS. While this has the advantage of proving properties

64

of the system that will be actually deployed, it is also often useful to check properties during

the system design [FBV17]. In fact, all the work on model checking for MAS is claimed to be

still in early stages so not really suitable for use on large and realistic systems [BDW06].

Considering this context, semantic reasoners may provide, for example, consis-

tency checking and inferences about the MAS specified in an ontology [FBV17]. The pos-

sibility to reason about the model fosters the implementation of model checking features in

the context of MAS. For example, when considering only MAS organisations, it is possible

to verify conflicts considering the existing norms, roles, and missions. When an instantia-

tion of MAS organisation is combined with instantiated agents, it is possible to verify other

kind of inconsistencies integrating information from more than one dimension, such as if the

agents contain the required capabilities to achieve the existing organisation goals. Simi-

larly, other kinds of verification are possible when focusing on the interactions of instantiated

agents and environments, i.e., verifying if agents’ actions are valid in a given environment

configuration [FBV17].

As previously explained, when integrating and matching information from more than

one dimension, it is possible to perform consistency checking through inferences obtained by

reasoning with our ontology [FBV17]. One example is to identify if the actions from agent’s

dimension are available as operations provided by the environment dimension. If there is an

action from an agent that does not exist in the environment, the invocation of such action in

run-time will result in an action failure. Thus, the verification of characteristics in instantiated

model at design time may prevent future errors to happen during the execution time of the

corresponding JaCaMo specified project. Similarly, it is possible to verify if the given agents

have the capability to achieve the goals specified in any specific organisation. Organisation

goals are assigned to agents playing the organisation roles, and an agent playing a specific

role may not have the required plans to achieve the goals that such organisation may assign

to it. Reasoning can be applied also to verify consistency among the norms in the organ-

isation. The combination of some norms can result in contradictions, for example, when

a prohibition occurs simultaneously with an obligation or permission. These contradictions

can appear when considering the missions of just one isolated role, or when combining the

missions of two or more roles.

As commented in previous subsection, Figure 4.9 shows that Rules, coded in

SWRL, can be inherited from the base OntoMAS ontology, and new Rules can be added

particularly to a specific extension and instantiation of OntoMAS, when defining a desired

MAS scenario (these are in bold). All elements in the ontology are taken into consideration

when semantic reasoners are executed for making inferences such as the ones depicted in

Figure 4.9. For example, one general rule is that if an agent A is in a space S, and this space

S can provide an observable property P, then it can be inferred that the agent A is able to

perceive P if it chooses to do so. This rule is coded as follows:

65

is-in(?a, ?s), provides-percept(?s, ?p) −> can-perceive(?a, ?p).

Rules created specifically for this scenario state that observations of ball position

and score take place in spaces defined as soccer fields. As can be noted, in such reasoning

mechanism it is allowed to relate elements from any dimension (e.g., agent) with elements

from another (e.g., environment).

Lets suppose now a more complex example for inferences about a modelled MAS.

We already commented that agents join in organisations by playing organisation defined

roles, and it is expected that such agents have in their codes the required plans to handle

the goals that the organisation may deliver to them. Organisation goals are assigned to

agents, for example if there is an obligation norm on that role, and an agent that adopted it

should have a plan for achieving that goal. Lets represent this with a new property to specify

that Agents should-have-plan-for Goals. This can be inferred, for example, if there is an

obligation norm N that targets a role R, and there is an agent A that adopts the role R, then,

the conclusion is that the agent A should have a plan for the goal G, where G is a goal of the

mission M, which is a mission of the obligation norm N. The following rule exemplifies how

to make this inference:

ObligationNorm(?n), targets-role(?n, ?r), adopts-role(?a, ?r),

targets-mission(?n, ?m), has-goal(?m, ?g) −> should-have-plan-for(?a, ?g).

As we have exemplified using some rules in this subsection and in previous ones,

each time even more complex information can be inferred from the basic conceptualisation

proposed by OntoMAS. Also, it allows extensions to be made on top of it, by including for ex-

ample new concepts, properties, and so on. Next Section evaluates the OntoMAS modelling

methodology and establishes a comparison with Prometheus in the context of designing

JaCaMo projects.

66

67

5. EVALUATING ONTOMAS IN THE MODELLING OF MAS

“There are no such things as applied sciences,

only applications of science."

Louis Pasteur — (1822 - 1895)

This Section presents our empirical results obtained when the proposed modelling

approach based on OntoMAS was used in practice. Despite investigating the use of this

approach, it is interesting to compared OntoMAS with the most closely related methodol-

ogy for MAS modelling reported in literature: Prometheus [PW03, PTW08]. In order to

obtain results on comparative experiments, the same scenario should be specified using

both approaches. Thus, this Section explains the details on our empirical results when both

OntoMAS and Prometheus were put in practice for modelling the same agent systems.

Prometheus was chosen for our comparisons due to its advanced practical results,

for example, it has tool support that is developed by the Prometheus community during

several years and it is commonly used by practitioners and researchers in the area [PW03,

PTW08]. We are not claiming that Prometheus is the closest approach to our work on the

basis of its methodological perspective (for example, it does not contain an explicit ontology),

but from a pragmatic viewpoint of the users, both approaches achieve the similar goal of

supporting the modelling and programming of MAS.

The round of experiment for evaluating OntoMAS and comparing it with Prometheus

was conducted with a group of 5 graduate Computer Science students engaged in a course

named “Multi-Agent Systems” at PUCRS in 2016. They have declared their expertise and

profile as follows:

• Multi-Agent Systems and JaCaMo: 3 participants only had their first contact with

MAS and JaCaMo in this course, while 2 had already a previous practical experience

with these two topics.

• Ontology and Protégé: 3 participants had previous knowledge in ontology and Pro-

tégé before this course, whereas 2 only had their first contact with ontologies during

the experiment. Although 3 participants claimed to know ontologies, none of them had

any previous knowledge about OntoMAS (until beginning the experiments).

• Prometheus: their first contact with Prometheus was only in the course, during the

experiment.

The experiments were conducted as follows. Initially, all participants were pre-

sented with a explanation and a demonstration of the two approaches – OntoMAS and

Prometheus. The tool for working with Prometheus models was the Eclipse plug-in called

68

PDT, and the tool used for the OntoMAS approach was Protégé. They were guided through

a learning and an experiment scenario. The learning scenario was an adapted specification

of the JaCaMo Hello World1, and it can be seen in Appendix B. The experiment scenario

was an adapted specification of the Gold Miners simulation2, and it can be seen in Appendix

C. In the end, all participants have used both approaches for modelling a specific MAS, but

they were divided into two groups. Each group started with a different methodology to avoid

bias, and then switched to use the other methodology in the same scenario (3 have started

with Prometheus, and 2 have used first OntoMAS). Figure 5.1 summarises this sequence

of activities conducted in the experiments for comparing the modelling approaches. Each of

these steps took place into the weekly two hours encounters of activities in classroom.

Figure 5.1 – Sequence of activities conducted in the modelling experiments.

5.1 Evaluations on the use of OntoMAS X Prometheus

After modelling the same scenarios of MAS using the two different approaches, the

participants were given a 5-point Likert scale [Lik32] for assessing the following assertions

(with “X” being replaced by Prometheus or OntoMAS in each affirmation):

• A1. To implement a system in JaCaMo, I find it easy to specify models in X.

• A2. I could understand the elements provided by the X approach.

• A3. The characteristics of JaCaMo are correctly represented in the X approach.

1Obtained from http://jacamo.sourceforge.net/tutorial/hello-world/
2Obtained from https://multiagentcontest.org/2007/

69

• A4. The X approach is complete since it covers all the essential elements of JaCaMo

systems.

• A5. I believe that it is useful to represent my JaCaMo system in the X approach.

• A6. The X approach provides good support for MAS programming in JaCaMo.

Figure 5.2 – Comparing Prometheus (P) and OntoMAS (O) (first shown in [FBV17]).

Our comparison of the two approaches under those criteria is summarised in Figure

5.2, in which, it is important to mention, all participants have answered to us anonymously

through a web page. In general, we have observed better acceptance towards the ontology

model, with the exception of assertion 2 (A2), regarding how easy it is to understand the

elements, and this may also be due to the fact that OntoMAS was considered more complete

(A4). OntoMAS was considered more correctly aligned with JaCaMo (A3) and, therefore,

more useful for MAS modelling in this context (A5). The participants’ opinions were more

positive for OntoMAS than Prometheus in the issue of supporting programming as well (A6).

Although, until this point, this group of participants did not work with the programming part

yet, which took place after this part of evaluating the modelling aspects (experiments related

with programming can be found in Section 7).

The questionnaires made with the participants have also asked for them if they

wish to make comments, reviews, suggestions, and/or critics to the two approaches. For

instance, we want to know if, according with their understanding, the meaning of something

was confusing or wrong for representing JaCaMo properties, and if something was missing

in order to make full designs of MAS as JaCaMo projects. We have obtained the following

feedback:

• One of the participants has opined that Prometheus is more generic and does not cover

some JaCaMo aspects, and that OntoMAS covers well the properties of JaCaMo, but

the specification may be more laborious and sometimes less intuitive.

70

• A participant observed that OntoMAS serves best the project needs than Prometheus,

since it is possible to better represent in OntoMAS what is intended to be implemented

in JaCaMo. It was suggested that the experience of using ontology might be better

with a complete and detailed manual describing every part of it, since many times the

participant did not know which abstraction should be used to solve some modelling

problems that were faced.

• Another participant pointed out that the use of Prometheus is more natural because

it is a visual tool, with easily defined flows, however it does not provide all the neces-

sary functionality to define a complete MAS to be later developed through JaCaMo.

OntoMAS was claimed to be more complete, but with a slower learning curve due to

its various concepts and relations that can be modelled.

• According to another participant, the modelling in Prometheus is more intuitive be-

cause it has a graphical user interface with drag-and-drop. However, the approach

that uses ontology through Protégé provides more options, so they were able to do a

much more complete modelling. It was suggested that, after finishing the ontological

modelling, it would be interesting to export it using some sort of visual notation such

as in the form of diagrams.

• Another suggestion was that the Protégé does not block users from creating an in-

consistency in their modelled system. It, however, finds the inconsistencies when a

semantic reasoners is executed over the ontology. In some situations it would be in-

teresting to have a way to interact with OntoMAS that prevents the user from creating

relationships that do not make sense.

As can be observed from the evaluations and comments obtained with the partici-

pants until this part of the experiment, in terms of correct representing the characteristics of

JaCaMo, the ontology approach seems to be playing a better role than Prometheus. Figure

5.3 focuses on a graph that compares the data about the assertion A3, previously depicted

in Figure 5.2, to emphasise this point.

Thus, in summary, our results indicate that: the ontology seems to be considered

as presenting a small advantage in terms of easiness of use (A1); it does not seem to have

much difference among the two approaches in the criteria of the level of understandability

regarding the elements provided in each approach (A2); modelling JaCaMo projects with

our ontology was considered more complete than modelling in Prometheus (A4); on the

topic of which approach is more useful to represent JaCaMo systems, the ontology got

better votes than Prometheus (A5); and before the participants knowing how these modelling

approaches would actually provide benefits for coding, their opinions were more inclined

towards OntoMAS than Prometheus in the issue of which modelling approach may be more

suitable for supporting programming of JaCaMo projects (A6).

71

Figure 5.3 – Correctly representation of JaCaMo characteristics in each approach.

Our initial evaluations of OntoMAS can be found in one of our journal paper [FBV17].

In that occasion, we have indicated some advantages for using ontology as proposed, such

as (i) standardisation of structures and concepts; (ii) more expressiveness to represent fur-

ther MAS concepts than with just the diagrams of Prometheus and Moise; (iii) just one

specification to model a complete MAS; (iv) avoid inconsistencies when naming the MAS

elements (especially in projects with several people); and (v) the relation between MAS

components can become clearer, such as among agents and actions. Participants from that

previous evaluation highlighted that the ontology is more flexible to embrace the needs of

MAS, and it groups in one place what other approaches represent in several separate dia-

grams. Also, they found Prometheus and Moise diagrams more intuitive at first, but without

covering as many details about the MAS environment as the proposed ontology does. Some

drawbacks were identified in that occasion too, it was commented as disadvantages that: (i)

specify an ontology is not a trivial task (previous knowledge of the concepts is required);

(ii) it can be more confusing to specify a MAS in an ontology; and (iii) the Protégé can be

complex to edit the ontology (however other software could be used to improve productivity).

Also, we have conducted a case study [FCVB16] in which one application was

modelled in Prometheus considering its future implementation in JaCaMo, which led us to

the identification of some gaps in the use of Prometheus in the context of JaCaMo projects.

Next, we evaluate some characteristics obtained from the OntoMAS and Prometheus mod-

els developed by the participants in this part of our experiment.

5.2 Comparing the models created in Prometheus and OntoMAS

This subsection presents a comparative evaluation that focuses on analysing the

models obtained from the use of the two different modelling approaches: OntoMAS and

72

Prometheus [PTW05]. All participants of the experiment have developed their models for the

same scenario of MAS (Gold Miners, described in Appendix C) using these two approaches

and having in mind its implementation in the JaCaMo [BBH+13] programming platform.

Our analysis of the models created by the participants aims at verifying the pres-

ence of some key elements that should be taken into consideration when designing a JaCaMo

project. These elements are depicts in the first column of Table 5.1. Our first observation

is that there are some MAS elements of JaCaMo that simply could not be represented in

Prometheus, such as the idea of Groups and Norms. Then, some elements can not be

found directly in Prometheus, but there are some elements with “similar” semantics that

could be used for that purpose. This is the case of Data that can be considered as Belief ,

Actors can be seen as the Artifacts, and Actions may be used to refer to Operations. A

third point on expressiveness and representativeness, is that in Prometheus we do not have

these two layers offered by an ontology to represent types of elements (using subclasses)

and the individuals (using instances). For example, it is not possible to use the only element

provided in Prometheus that refers to Agents to make a reference both to the types of agents

as well as the individual agents.

With these observations in mind, some JaCaMo elements have appeared in the

same percentage of the models defined by the participants in both approaches: Agents,

Goals, and Messages. The models produced in OntoMAS more frequently contained Plans,

Beliefs, and Artifacts, while the models created with Prometheus considered more often

Percepts, Operations, and Roles. As already mentioned, Groups and Norms can not be

represented in Prometheus.

Table 5.1 – Comparing the presence of elements in Prometheus and OntoMAS models in

some of the key elements of JaCaMo projects.
Percentage of participants that defined

the corresponding elements in ...

MAS Elements ... Prometheus ... OntoMAS

Agents 100% 100%

Goals 100% 100%

Messages 20% 20%

Plans 0% 40%

Beliefs
40%

(if considering Data=Belief)
80%

Artifacts
60%

(if considering Actor=Artifact)
100%

Percepts 100% 80%

Operations
100%

(if considering Action=Operation)
60%

Roles 100% 60%

Groups Can not be represented. 80%

Norms Can not be represented. 40%

73

As we analyse the modelling methodologies and the models produced with them

with an eye on JaCaMo, we observe that JaCaMo developers lack a specialised approach

for their projects. Existing approaches, such as Prometheus, are not fully compatible and

suitable for the abstractions provided in JaCaMo. In this direction, agent-oriented software

engineers would have the option of not using a modelling methodology, which would result

in some limitations and problems. Another alternative would be to adapt an existing method-

ology (e.g., Prometheus), or create a new approach highly oriented to and integrated with

the desired coding platform (as done in this thesis).

Prometheus [PW03] demonstrates, by means of PDT, a level of integration and

alignment with the JACK agent programming platform. PDT is a graphical tool that supports

the Prometheus methodology in order to build the design of MAS [PTW08]. It started as a

stand alone tool, but it is nowadays being developed as a plug-in for Eclipse. PDT offers,

among several interesting features, the possibility of generating skeleton code for the JACK

platform, when the detailed design is completed. However, as we investigated in one of

our papers [FCVB16] and during this thesis, PDT and Prometheus have some issues when

used for developing MAS for JaCaMo. On top of that, we may also argue that JaCaMo has

demonstrated important advantages for its programmers and users when compared with

JACK.

In this Section we have analysed and discussed the results of the experiments

to compare our approach with Prometheus for modelling MAS in the context of JaCaMo

projects. An extended comparative analysis between the models built in each of the ap-

proaches, and comparisons of each approach for other stages of AOSE is planned as future

work. Although the results reported here are limited to the given population and applications

that took place in the experiments, they help to indicate some interesting advantages regard-

ing the application of the approach proposed in this thesis for modelling MAS. Next Section

presents our techniques for supporting the programming of such systems in JaCaMo using

models specified in OntoMAS.

74

75

6. TECHNIQUES FOR PROGRAMMING USING ONTOMAS

“The art of programming is the art of

organising complexity, of mastering multitude

and avoiding its bastard chaos as effectively as

possible."

Edsger Dijkstra — (1930 - 2002)

This thesis proposes two different techniques for code generation based on models

specified using OntoMAS. One technique is the iterative drag-and-drop of elements from

the ontology to transform them into the different parts of code that compose a JaCaMo

project: Jason, CArtAgO, Moise, or the jcm file. This first part is described in the subsection

6.1, and its explanation is complemented by the Appendix D. The other technique is the

automatic generation of the initial files and code of a JaCaMo project that matches the

ontology-specified content. This second part is described in the subsection 6.2, and the

explanation is complemented by the Appendix E. Our tool that implements both techniques,

called Onto2JaCaMo, is shown in subsection 6.3.

Initially, lets make a mapping of where elements from OntoMAS are usually found in

a JaCaMo project. Each subclass of Agent is found in Jason as .asl file, while its instances

are usually found as the individual agents defined by an agentID in the .jcm file. Instances

of Plan are found inside the .asl code of the type of agent that contains such plan, and

instances of Action are usually found in Jason in the body of agents’ plans. Instances of

Goal and Belief are usually found inside the code of agents (.asl files). Also, sending a

Message may be a part of a plan in agents.

Each subclass of Artifact is found in CArtAgO as a Java class, and instances of

Artifact subclasses represent a real object of that type, which may be found in JaCaMo

in the .jcm file that describes the initial artifacts of a system, however other artifacts may

be created after the initialisation of the MAS. Spaces are initialised in JaCaMo at the .jcm

file, but agents may make reference to spaces in their code (the .asl files). Operations are

found in CArtAgO as methods of the artifact that implements such procedures. Instances

of Percept (ObservableProperty or ObservableEvent) are found inside the java code of

artifacts through methods provided by the CArtAgO API to manipulate them (such as defi-

neObsProperty, getObsProperty, updateObsProperty, and signal).

Subclasses of Group can be found in the XML that specifies an organisation in

Moise, and their instances can be found in the .jcm file of JaCaMo, as well as in the code of

agents in Jason that can make references to groups (e.g. join_group). Instances of Role are

found also in the Moise XML file, and the code of agents in Jason can make reference to such

roles (e.g. adopt_role). Instances of OrganisationGoal are also found in the Moise file, and

the code of agents in Jason can make references to those goals (for example, agents may

76

have plans to act when a goal is assigned to them from the organisation). Lastly, instances

of Missions and Norms are also defined in the Moise XML file of a JaCaMo project.

6.1 Drag-and-Drop Transformations from OntoMAS to JaCaMo

The idea of using an ontology in a tool for providing drag-and-drop operations from

models to code in JaCaMo has been published initially in [FHM+15], and most recently

in [FBV17]. The elements of the ontology can be dragged to generate code for the different

parts of JaCaMo, such as Jason, CArtAgO, Moise, or the JCM file that corresponds to the

specification that initialises a JaCaMo MAS. How each element from OntoMAS models can

be transformed through drag-and-drop for Jason code is depicted in Table 6.1, which means

when a programmer is dropping an element from ontology in the .asl file that corresponds to

the code of a Jason agent. Table 6.2 shows this type of transformations for CArtAgO, which

is coded in a Java class. Table 6.3 specifies the drag-and-drop from OntoMAS to Moise

specifications in XML, and Table 6.4 considers the conversions for the JCM file, which is

responsible for the initialisation of MAS project in JaCaMo. Thus, these tables contemplate

the technique of making drag-and-drop transformations from OntoMAS models to each part

of programming in JaCaMo (Jason, CArtAgO, Moise, and JCM file).

To exemplify the drag-and-drop conversions, let us take a look at how instances

of the ObservableProperty concept may be employed in the code of each of the different

parts of JaCaMo. Suppose an instance of ObservableProperty called temperature, this is

characterised by the environment dimension, so if a programmer makes a drag-and-drop

of temperature in this dimension, a code suggestion may be to update the value of such

observable property. Thus, the following code is created:

getObsProperty(temperature).updateV alue(newV alue);

In Jason, making a drag-and-drop using this same instance of ObservableProp-

erty may give origin to a plan triggered by the observation of such property:

+temperature : true <– planBody.

However, if dropped in the middle of a plan, then just the corresponding belief iden-

tified by temperature may be generated. When a JaCaMo system is running, the observable

properties provided by artifacts in the environment become beliefs to agents that are focused

on these artifacts, and when they become beliefs, some plans may be triggered by the belief

addition event. Instances of observable properties are not applicable for drag-and-drop code

transformations in the case of Moise or JCM file.

We have condensate the information about the drag-and-drop operations for trans-

forming OntoMAS to JaCaMo code in these 4 tables (6.1, 6.2, 6.3, and 6.4). Appendix D

complements the explanation about this topic in a textual manner.

7
7

Table 6.1 – Drag-and-drop code generation for Jason from ontology elements.
Instance of the

Ontology Element
Drag-and-Drop Code

for Jason
Explanation

Agent Dimension

ExternalAction actionName();
an external action invocation inside a plan’s body

representing an agent acting in the environment.

InternalAction .actionName();
an internal action invocation inside a plan’s body

representing an action that an agent performs mentally.

Agent agentName
the identification of the individual agent in order to

send messages, or perform some other tasks.

Belief +beliefName[source(value)];
a belief addition event with source’s value defined by

the belief’s subtype: self, percept, or other agent.

AchievementGoal !achievementGoalName;
an initial goal for that agent; or a goal that

has to be achieved during the execution a plan.

TestGoal ?testGoalName; a goal that has to be tested during the execution of a plan.

Message
send(receiver, illocutionaryForce,

propositionalContent);
the act of sending the corresponding instance of message

Plan
is_triggered_by : true <-

actions; goals.

a plan with its triggering condition, context (that by default

is true), and a body composed (mainly) of actions and goals.

Environment Dimension

Space joinWorkspace("workspaceName"); an action for that agent to join the corresponding workspace.

Artifact focus(artifactName); the action of focusing on that instance of artifact.

Operation operationName();
the invocation of the corresponding operation in the body of a

plan representing the execution of that operation by an agent.

ObservableProperty +propertyName : true <- planBody. a plan triggered by the observation of the corresponding property.

ObservableEvent +eventName : true <- planBody. a plan triggered by the observation of the corresponding event.

Organisation Dimension

Group join_group(groupName); an action of joining in the given group.

Role adopt_role(roleName,groupName); the action to adopt the given role in the specified group.

Mission
commit_mission(missionName,

schemeId);

an action to commit with the instance

of mission in the given scheme.

Norm +normName: true <- planBody. a plan triggered by the perception of the given norm.

OrganisationGoal +!goalName : true <- planBody. a plan triggered by the addition event of the specified goal.

7
8

Table 6.2 – Drag-and-drop code generation for CArtAgO from ontology elements.
Instance of the

Ontology Element
Drag-and-Drop Code

for CArtAgO
Explanation

Agent Dimension

ExternalAction operationName();
an operation invocation within a method representing

an artifact executing the given operation.

InternalAction it is not applicable for drag-and-drop code transformations for CArtAgO.

Agent agentName
an individual agent so the environment may

be programmed to react accordingly.

Belief
getObsProperty(perceptName).

updateValue(newValue);

if it is a percept-type belief, then it updates the value

of the corresponding observable propertya.

AchievementGoal signal(!achievementGoalName);
an information that artifacts can send to agents

in order to initiate the achievement of a goal.

TestGoal signal(?testGoalName)
an information that artifacts can send to agents

in order to initiate the test of a goal.

Message signal(!send(receiver, act, value));
a signal where an artifact requests the

sending of the corresponding message.

Plan signal(triggeringCondition);
a signal with the triggering condition

corresponding to that plan.

Environment Dimension

Space
updatePosition(new

AbstractWorkspacePoint());
an update to the position of this artifact.

Artifact
ClassName individualName =

new ClassName();
the declaration and initialisation of a new artifact.

Operation operationName();
the invocation of the given operation representing

an artifact executing the related operation.

ObservableProperty
getObsProperty(propName).

updateValue(newValue);
an update in the value of the observable property.

ObservableEvent signal(eventName); the generation of a signal of the observable event.

Organisation Dimension

Group, Role, Mission,
Norm, OrganisationGoal

it is not applicable for drag-and-drop code transformations for CArtAgO.

aFor beliefs in the types of self or other agent, there is no related code to generated regarding the environment.

7
9

Table 6.3 – Drag-and-drop code generation for Moise from ontology elements.
Instance of the

Ontology Element
Drag-and-Drop Code

for Moise
Explanation

Agent Dimension

Plan
operator=“sequence”>

id=“goalN/></plan>

the description of how the plan is

decomposed in its goals.

ExternalAction, InternalAction,
Agent, Belief, AchievementGoal,

TestGoal, Message
it is not applicable for drag-and-drop code transformations for Moise.

Environment Dimension

Space, Artifact, Operation,
ObservableProperty,

ObservableEvent
it is not applicable for drag-and-drop code transformations for Moise.

Organisation Dimension

Role
id=“roleName”>

role=“extendsRole”/></role >

a role definition which may

extend some other role.

Mission
id=“missionName” min=1 max=1>

id=goal1/>...id=goalN/></mission>

the specification of the mission

which contains a set of goals.

Norm
id=“normName” type=“normType”

role=“targetRole” mission=“targetMission”/>

the specification of a norm that targets

the given role and mission.

OrganisationGoal id=“goalName”> the specification of a goal.

Group it is not applicable for drag-and-drop code transformations for Moise.

8
0

Table 6.4 – Drag-and-drop code generation for JCM file from ontology elements.
Instance of the

Ontology Element
Drag-and-Drop Code

for the JCM file
Explanation

Agent Dimension

Agent agent agentName : agentType.asl { parameters }
an instantiation of an individual

agent of the given type

Belief beliefs : beliefName
the definition of an initial belief,

if it is a self-type beliefa.

AchievementGoal goals : goalName the definition of an initial goal.

ExternalAction,
InternalAction, TestGoal,

Message, Plan
it is not applicable for drag-and-drop code transformations.

Environment Dimension

Space workspace spaceID { parameters } the definition of a workspace.

Artifact artifact artifactName : className() an instance of artifact of the given type.

Operation,
ObservableProperty,

ObservableEvent
it is not applicable for drag-and-drop code transformations.

Organisation Dimension

Group group groupName : groupType { parameters } an instance of group of the given type.

Role roles : roleName in groupName
the definition that an agent will be

playing the given role in a group.

Mission, Norm,
OrganisationGoal

it is not applicable for drag-and-drop code transformations.

aFor beliefs in the types of percept or other agent, there is no related code to generated regarding the initial configuration file.

81

6.2 Initial JaCaMo Project Generation from OntoMAS Models

The idea of using an ontology for the automatic generating a skeleton code for

each of the JaCaMo languages has been published initially in [FSP+15]. Figure 6.1 illus-

trates ontological elements and their resulting code counterpart in Jason, CArtAgO, and

Moise. According to this image, instances1 of some concepts from an ontology are being

transformed into code for JaCaMo.

Figure 6.1 – Converting ontology to MAS code (images adapted from [FSP+15]).

While when using drag-and-drop programmers are iteratively transforming elements

from OntoMAS into code, this other code generation technique uses another perspective,

1Currently, we claim that in some situations subclasses play the desired role better them instances.

82

which is to generate an initial structure of a corresponding project in JaCaMo to what is

specified in the ontology model.

The generation of initial agent files and code for Jason considers mainly the sub-

classes and instances of the OntoMAS agent dimension. For example, we have that each

subclass of Agent becomes an .asl file with its corresponding plans, actions, goals, beliefs,

and messages. However, characteristics defined at other dimensions, such as the environ-

ment, although not directly applicable to generate the initial code at the agent level, may be

considered to suggest implementation alternatives for programmers (at least for them to be

aware of). For example, for an agent that is expected to receive a given percept, a plan

triggered by the addition event of that percept may be suggested as a situation that is likely

desired to be handled by the programmers.

Similarly, the initial files of the CArtAgO part of a JaCaMo project derive mainly

from the environment dimension of OntoMAS, and the Moise initial code is generated based

on the organisation dimension. Subclasses of Artifact become the java files with their cor-

responding operations as methods, and observable properties are initialised. And all the

organisation elements (subclasses, instances, and relationships) are considered in the gen-

eration of the initial XML file of a Moise organisation. Lastly, the JCM file considers charac-

teristics from all the three dimensions, and relationships from their integration.

To exemplify the initial project generation, let us take a look at the instance of Ob-

servableProperty that we were using previously, the temperature. If it is said that a type

of artifact (e.g., Computer) has this property, then the definition of such observable property

must appear inside the init() method in the class of Computer artifacts in the format:

defineObsProperty(“temperature”, initialV alue);

Considering Jason, Moise or JCM file, instances of observable properties are not

directly applicable for automatic code generation in this case. However, a plan triggered by

the addition event of the related observable property could be suggested to the programmer

of the agents as a situation that could be desired to be handled.

How each element from OntoMAS models can be transformed into the initial struc-

ture of files and code for Jason is depicted in Table 6.5. This same principle applied to

CArtAgO is explained in Table 6.6, for Moise in Table 6.7, and for the JCM file in Table 6.8.

These tables contemplate the use of OntoMAS models as starting point to generate skele-

ton code to each part of programming in JaCaMo (Jason, CArtAgO, Moise, and JCM file).

Appendix E complements the explanation about this topic in a textual manner.

8
3

Table 6.5 – Template code generation for Jason from ontology elements.
Instance of the

Ontology Element
Base Code
for Jason

Explanation

Agent Dimension

Agent (subclass) agentSubclass.asl file
a type of agent that contains all related elements

such as plans, goals, and beliefs.

Belief beliefName[source(value)]

an initial belief in the corresponding .asl file

with the source’s value defined by the

belief’s type (self, percept, or other agent).

AchievementGoal !achievementGoal. an initial achievement goal in the corresponding .asl file.

Message
!sendMsgName <-

.send(receiver, illocutionaryForce,

propositionalContent);

a plan to send the corresponding message. Also, a plan for

the receiver agent may be created taking as triggering condition

the receiving such propositionalConcent and illocutionaryForce.

Plan
is_triggered_by : true <-

actions, goals.

a plan in which it has a triggering condition, a context, and a

body composed (mainly) of actions and goals. The plan

is inserted in the .asl file of the agent type that has it.

ExternalAction, InternalAction,
TestGoal, Agent

not directly applicable for automatic code generation for Jason.

Environment Dimension

ObservableProperty
+propName : true <-

planBody.

it is not directly applicable for automatic code generation.

However, a plan triggered by the addition event of the

related observable property may be suggested as a

situation that is likely desired to be handled.

ObservableEvent
+eventName : true <-

planBody.

it may be suggested (however, it is not mandatory) a plan

triggered by the observation of the corresponding event.

Space, Artifact (instance and
subclass), Operation

not directly applicable for automatic code generation for Jason.

Organisation Dimension

Group (instance and subclass),
Role, Mission, Norm,

OrganisationGoal
not directly applicable for automatic code generation for Jason.

8
4

Table 6.6 – Template code generation for CArtAgO from ontology elements.
Instance of the

Ontology Element
Base Code

for CArtAgO
Explanation

Agent Dimension

ExternalAction, InternalAction,
Agent (instance and subclass), Belief,

AchievementGoal, TestGoal, Message, Plan
not directly applicable for automatic code generation for CArtAgO.

Environment Dimension

Space, Artifact (instance) not directly applicable for automatic code generation for CArtAgO.

Artifact (subclass) SubclassName.java
a new .java file composed with all related elements

such as operations, and observable properties.

Operation
@OPERATION void

operationName(){ }

a method representing the corresponding operation

which may contain zero or more parameters.

ObservableProperty
defineObsProperty(

"propertyName",value);

the definition of the observable property inside

the "init" method in the class of the related artifact.

ObservableEvent signal(eventName);
the artifact’s class code may indicate that

this signal can be sent by this artifact.

Organisation Dimension

Group (subclass and instance),
Role, Mission,

Norm, OrganisationGoal
not directly applicable for automatic code generation for CArtAgO.

8
5

Table 6.7 – Template code generation for Moise from ontology elements.
Instance of the

Ontology Element
Base Code
for Moise

Explanation

Agent Dimension

ExternalAction, InternalAction, Agent
(subclass and instance), Belief, TestGoal,

AchievementGoal, Message, Plan
not directly applicable for automatic code generation for Moise.

Environment Dimension

Space, Artifact (subclass and instance),
Operation, ObservableProperty,

ObservableEvent
not directly applicable for automatic code generation for Moise.

Organisation Dimension

Group (subclass)
-specification id="groupName">

id="roleN"/></group-specification>

a declaration of a group specification

that contains all related roles.

Group (instance) not directly applicable for automatic code generation for Moise.

Role
id="roleName">

role="extendsRole"/></role>

a role definition which may

extend some other role.

Mission
id=""missionName" min="1" max="1">

id="goalN"/></mission>

the specification of the mission that

contains a set of N goals.

Norm
id="normName" type="normType"

role="targetRole" mission="targetMission"/>

the specification of a norm which

targets a role and a mission.

OrganisationGoal id="goalName"/> a specification of an organisational goal.

8
6

Table 6.8 – Template code generation for JCM file from ontology elements.
Instance of the

Ontology Element
Base Code
for JCM file

Explanation

Agent Dimension

Agent (subclass)
although each subclass of Agent does not generate a specific base code for

the JCM file, the sources that agent instances are allowed to have are given by these types.

Agent (instance)
agent agentID :

className.asl { parameters }

a declaration that instantiates an agent of the given

type which may be configured by some parameters.

Belief beliefs : beliefName
an initial self belief of the related instances of agents

in the corresponding individual agents’ definition.

AchievementGoal goals : goalName
an initial achievement goal of the related instances of

agents in the corresponding individual agents’ definition.

ExternalAction,
InternalAction, TestGoal,

Message, Plan
not directly applicable for automatic code generation for JCM file.

Environment Dimension

Space workspace spaceID { parameters }
the definition of a workspace which

can be configured by some parameters.

Artifact (subclass)
although each subclass of Artifact does not generate a specific base code for

the JCM file, the sources that artifact instances are allowed to have are given by these types.

Artifact (instance) artifact artifactName : className()
an instantiation of an artifact from the given class, in which

it should be placed inside a workspace’s declaration.

Operation,
ObservableProperty,

ObservableEvent
not directly applicable for automatic code generation for JCM file.

Organisation Dimension

Group (subclass),
Mission,Norm,

OrganisationGoal
not directly applicable for automatic code generation for JCM file.

Group (instance) group groupID : className { parameters }
the definition of a group with the given type

which can be configured by some parameters.

Role roles : roleName in groupName
the definition that an agent will be playing the

given role defined in a specific group.

87

6.3 Onto2JaCaMo Tool for Ontology-based Development of MAS

We implemented the techniques previously explained in subsections 6.1 and 6.2 in

a software tool, which we refer to as Onto2JaCaMo. It consists of a plug-in for Eclipse that

loads an instantiated model based on the OntoMAS ontology to provide code generation for

JaCaMo. Eclipse [Bud04] is an open source software development project that provides an

IDE in which a basic unit of function, or a component, is called a plug-in. IDEs are soft-

ware applications, which combine different development tools under a unified user interface.

Eclipse is already the standard IDE for developing JaCaMo code, and it was indeed an inter-

esting choice since Eclipse is pointed out as a mature IDE, and one of the most widely used

by programmers [PB09].

The installation of Onto2JaCaMo just demands to include the .jar file corresponding

to the plug-in in the directory named “plugins” in the folder where the Eclipse is located. The

plug-in can be activated to appear visually in the graphical interface of Eclipse by following

this sequence: Window → Show V iew → Other... → JaCaMo Ontology → Ok. Figure

6.2 shows how to follow these steps for activating the plug-in. When it is enabled, the plug-

in requests to be informed about the OWL file corresponding to an OntoMAS instantiated

ontology so that it can be loaded in Onto2JaCaMo.

Figure 6.2 – Activating Onto2JaCaMo in Eclipse (first published in [FBV17]).

The plug-in was designed to be used in the “JaCaMo Perspective” of Eclipse (or

related perspectives, such as Jason). The tool loads OWL ontologies and provides three

model-based programming features to generate MAS code: drag-and-drop, conversion from

88

ontology to code, and auto-complete from instantiated ontologies. It was developed using

the OWL API [HB11], which is an open source Java API for creating, manipulating, and

serialising ontologies in the OWL format.

The drag-and-drop functionality from ontology to agent code can be seen in Fig-

ure 6.3, which depicts the Eclipse in Jason perspective. In the right side of the image, the

developer can visualise and navigate in the ontology concepts, instances, and properties

(from the new Eclipse component developed as part of this thesis). These elements from

the model on the right side can be dragged to the left side that represents the AgentSpeak

code of a Jason agent (in this case player.asl). As exemplified in Figure 6.3, the program-

mer is dragging and dropping the action pass_ball to be inserted in a plan of agents of type

“player”. Similarly, it is possible to provide developers the auto-complete feature from ontol-

ogy to agent code, which is activated when the developer is typing MAS code (or press the

shortcut “ctrl+space”). Then, the available options based on the ontology are presented to

programmers as suggestions. One example is when coding the plan’s context, which may be

composed of ontology-based queries (e.g., verifying if an individual belongs to a concept).

Figure 6.3 – Drag-and-drop in Eclipse for MAS coding (first published in [FHM+15]).

To change the desired context of JaCaMo code to be obtained from the ontology

click on the illustrated icon identified with the message “Choose target code platform” at the

top of the plug-in (or activate this option by right-clicking inside the area that displays the

ontology). Then, select which platform to target, and click “ok” as shown in Figure 6.4.

89

Figure 6.4 – Changing the JaCaMo target platform in Onto2JaCaMo.

6.4 Considerations on the Onto2JaCaMo Tool and its Techniques

For an effective and efficient software development it is essential that preferably all

tasks and activities during the development process are adequately supported by tools [PB09].

A broad overview over the state of the art in the area of software tools [GH02] has identified

18 different kinds of tools (e.g., design tools, IDEs, as well as testing and debugging tools).

The quality of any tool support can be assessed by considering the degree of support for the

different phases and tasks [PB09], e.g., design tools, which besides the creation and editing

of design models also often support consistency checking and/or code generation.

Our presented tool is able to generate code fragments based on design information,

which is known as forward engineering [PB09]. This is in the opposite direction of extracting

design information out of existing application code, the so called reverse engineering. A

drawback of forward or reverse engineering techniques is that after a once generated artifact

has been changed manually, forward or reverse engineering cannot be reapplied without

loosing the changes, as stated by the called “post editing problem”. The combined support

of forward and reverse engineering, such that changes in one artifact can always be merged

into the other without compromising consistency or loosing changes, is referred as round-

trip engineering [PB09]. Currently, the Onto2JaCaMo tool presented in this thesis does not

address yet such advanced and complex concepts of synchronisation, however, these would

be interesting topics for future work.

This Section have described our techniques for supporting the programming of

MAS based on OntoMAS models and the implementation of such techniques in Onto2JaCaMo.

In next Section, we present the empirical results that we have obtained from putting these

techniques and Onto2JaCaMo in practice to support MAS development.

90

91

7. EVALUATING THE PROGRAMMING TECHNIQUES AND TOOL

“Each problem that I solved became a rule,

which served afterwards to solve other

problems."

Rene Descartes — (1596 - 1650)

The previous Section of this thesis has explained our proposed model-based pro-

gramming techniques for supporting AOSE and their implementations in the Onto2JaCaMo

tool. In this Section, we provide the complete details on the empirical results obtained when

such techniques and tool were put in practice for developing different agent systems.

This part of evaluating Onto2JaCaMo and its programming techniques was con-

ducted with the same group of 5 participants that have joined our evaluation of OntoMAS.

Thus, we refer to Section 5 for details on the participants profile and background knowledge.

This part of our experiments took place after the participants have finished the ex-

periments in which OntoMAS was used for the modelling of agent systems (described in

Section 5). Before starting the experiments regarding the evaluation of the programming

techniques implemented in Onto2JaCaMo, the participants received the required prior in-

structions on these topics in order to perform the activities with the minimum required knowl-

edge, such as, for example, how to load and how to use OntoMAS models in Onto2JaCaMo.

The participants received the Onto2JaCaMo plug-in, where they had to load their

previously instantiated ontology models and use the tool to support the model-based de-

velopment of their agent code. Different from Section 5 in which all participants created

OntoMAS (and Prometheus) models for the same scenarios, in the evaluation of the pro-

gramming part, each participant had defined his/her own unique scenario to work with. Then,

such specification should be modelled using OntoMAS and developed using Onto2JaCaMo.

Subsection 7.1 explains the feedback obtained from the use of Onto2JaCaMo with

its drag-and-drop model-based programming technique through the evaluation provided by

the participants. Subsection 7.2 makes a comparison and an analysis between the model

specified in OntoMAS, and the JaCaMo code that was delivered, to point out the importance

of generating the initial project code from models as proposed by our other model-based

programming technique.

7.1 Evaluations on the Use of Drag-and-Drop and Onto2JaCaMo

After finishing the programming of their MAS using the drag-and-drop provided

by Onto2JaCaMo, the participants were surveyed by means of questionnaires to extract

92

their perceptions and opinions about the techniques and tool. The participants were queried

through affirmations using a 5-point Likert scale [Lik32]. Also, all participants have answered

to us anonymously in a web page. Their answers can be seen in the frequency diagram

depicted in Figure 7.1, which investigates the following affirmations:

• Easy to understand: it is easy to understand the functioning of the Onto2JaCaMo;

• Easy to use: Onto2JaCaMo is easy to use;

• Faster programming: Onto2JaCaMo enables faster programming of MAS, thus it can

be considered an efficient tool;

• Easy to visualise: it is easy to visualise the ontology components in the way they

appear in the Onto2JaCaMo graphical interface;

• Clear code generation: the code generation is clear and it is intuitive how the ontology

elements are transformed into MAS code (e.g., drag-and-drop);

• Improved model-code transition: Onto2JaCaMo approximates and improves the

transition between the specification/modelling and the programming of MAS;

• Coding support: Onto2JaCaMo offers support for the coding of MAS;

• Avoid mistakes: programmers make less mistakes or inconsistencies when the code

is generated from OntoMAS models;

• Advantages for programming: OntoMAS and Onto2JaCaMo can be useful when

programming, as they bring developers new functionalities without impeding the use of

other development tools (in this case, Eclipse); and

• Better JaCaMo understanding: Onto2JaCaMo promotes an improved learning and a

more didactic understanding about JaCaMo.

Some criteria have received only positive evaluations from all participants, such

as that Onto2JaCaMo is easy to understand, provides coding support, offers advantages for

programming, and enables a better understanding of JaCaMo. Onto2JaCaMo was evaluated

negatively by only one participant, and only in one issue, which says that it has a clear code

generation in the sense that it is intuitive how elements from the ontology are transformed

into MAS code. In the remaining criteria, despite being well evaluated by the majority, at

least one participant has chosen to neither agree or disagree, which represents a neutral or

undecided position. Another interesting point to highlight is that these most recent results

evaluate better most of the issues that were investigated in our previous study [FBV17].

We have also made open questions to the participants about Onto2JaCaMo. One

of these questions was: “In your opinion, what advantages can be gained in the current im-

plementation of the Onto2JaCaMo plug-in?”. The following advantages were enumerated:

93

Figure 7.1 – Participant opinions on their use of Onto2JaCaMo plug-in.

• Onto2JaCaMo facilitates the implementation in JaCaMo, mainly for beginners or for

those who are not fully aware about how to implement some concepts.

• The plug-in improves the understanding about the operation (behaviour) of JaCaMo,

such as how the programming occurs.

• Onto2JaCaMo helps with syntax issues since it brings code templates (it is important

because the traditional “ctrl + space” shortcut does not work in all JaCaMo extensions).

• More agility can be obtained from generating JaCaMo source code.

• During development, it is interesting to visualise the system’s ontology, so that the idea

defined in the ontology may be followed easier when programming.

We have also asked to each participant what disadvantages were detected in the

current implementation of the Onto2JaCaMo plug-in. The following points were enumerated:

• One participant pointed out that some options should not be suggested given a current

context. For example, if you have the .asl file open, dragging CArtAgO or Moise should

not be available. However, with prior knowledge on the use and context of each feature,

this would certainly not be a problem.

• There is no possibility of changing concepts; i.e., in the course of the implementation,

new concepts have been added/changed.

• Need to always select the ontology at each time that the Eclipse is opened.

94

• There is a lack of code generation when dragging some elements.

We highlight some alternatives to address these disadvantages pointed out by the

participants. It is important to observe that not all elements generate some code to every

platform of JaCaMo, as can be observed from our explanation on the proposed programming

technique. The suggestion of updating OntoMAS models inside the IDE context of Eclipse

is indeed interesting (instead of using an ontology editor as we have currently investigated

in this research). Some shortcuts such as to save the address of a working ontology in

a worskpace may be implemented in future releases. Also, more intelligent mechanisms

of automatic identification of the programming location in which the drag-and-drop is being

applied may be considered as well, thus, enabling more sophisticated context awareness to

take place inside the implementation of the techniques for transforming models into code.

The third open question made to the participants was the following: “Is there any-

thing else that could be improved or changed in Onto2JaCaMo to enhance the features that

it offers? If so, what?”.

• The option to refresh the ontology (without needing to reload the IDE), or even to be

able to edit the ontology in the Eclipse plug-in itself.

• It was suggested to highlight which of the ontology elements shown in Onto2JaCaMo

are valid alternatives for drag-and-drop in the current JaCaMo file being edited (asl,

java, XML, or jcm file). Thus, pointing out the valid options as suggestions, and omitting

the alternatives not applicable in that context;

• Changing the destination of the code generation (Jason, CArtAgO, Moise) could be

more intuitive. It was suggested that the target of the drag-and-drop could be inferred

automatically based on the context of the files opened in the IDE.

• Correction of the code generations that in some cases were presenting minor bugs.

All of the suggestions for improvements previously mentioned and the feedback

obtained directly from their target users is very important and should orientate the next re-

leases of Onto2JaCaMo towards its community. Our final request was if the participants

would you like to leave any final comment, question, or suggestion. In this space, one

participant pointed out that the first impression in using the plug-in is that it really helps in

understanding the technologies inside JaCaMo: Jason, CArtAgO, and Moise. Other par-

ticipant have highlighted that it was quite creative to implement such functionalities using

a plug-in format in an already consolidated IDE. According to this participant, this greatly

facilitates the development and adds value to the product.

Added to the results obtained in this last round of evaluation and proof of concept,

it is important to mention the considerations that we have highlighted based on our initial

round of experiments [FBV17]. In that occasion, it was observed that such plug-in helps in

95

code consistency (e.g., it facilitates coding using the same terms), and it prevents developers

from using terms outside the ontology-based model. In summary, it was observed that the

proposed approach provides an overview about agent systems to be visualised inside the

programming context, combined with features of dragging content from models to MAS code.

It was also identified in that time that more code of MAS could be generated from

the proposed modelling approach, and that the ontology could be used in a technique to con-

strain the MAS coding (i.e., indicate errors or mismatches between model and code). We

also have indicated that Onto2JaCaMo could allow to edit the model (for example, to include

new instances), which would discard the need of using an ontology editing tool to update the

OntoMAS model. Another point that was highlighted, although a very complex one, is the

automatic update of the ontology when the MAS code changes [FBV17], in the direction of

synchronising model and code. Currently, programmers have to manually change the ontol-

ogy to reflect changes in the code and such maintenance can be very laborious. This might

be solved by implementing features to highlight mismatches between MAS code and its cor-

responding model in order to keep both aligned (in other words, refactoring mechanisms for

model and code synchronising).

7.2 Evaluating the Generation of an Initial JaCaMo Project from OntoMAS Models

In order to evaluate the use of our technique for generating JaCaMo code from in-

stantiated ontologies, we compare the code that can be created automatically from OntoMAS

models with the code actually programmed by the participants. Through these comparisons,

we want to demonstrate the correspondences and similarities between elements in the code

that was automatically generated from the specification in contrast with the code that was

manually programmed. These similarities between these two sources of code are indicative

of the correctness of the proposed model-based code generation technique.

For example, one participant have worked with a so called “Rescue Scenario”, in

which the MAS simulates agents rescuing injured victims. We highlight in Table 7.1 some

key elements in the OntoMAS model created by the participant, the corresponding code that

can be automatically generated from these elements by using the proposed techniques, and

the code actually programmed by the participant. We want to emphasise that the model-

based technique for generating code is indeed offering a program equivalent with the code

created by a programmer1, given the analysed aspects.

From analysing the elements in Table 7.1, we observe that there are strong similari-

ties when comparing the code generated from the model with the code actually programmed.

The only aspect of divergence observed was the amount (and the distribution) of the agents

1The model is in a higher abstraction level than the code, i.e., sometimes only a structure or skeleton of

code may be created and programmers have to complete to obtain a fully executable and running system.

96

and of the artifacts, represented by their instances. This is a minor change in the code,

and it has occurred probably because the developer decided to adjust his/her simulation by

including more agents of a given type, less of some others, and so on. We also have noted,

in this scenario, that the characteristics about the environment were mostly maintained as

well, however the terminology changed a little bit but the semantics and meanings were

maintained. For example, by transitioning from modelling to coding, the same set of 4 types

of artifacts appear in both cases, however Map changed its name to RescueP lanet and Tent

to Agenda. This, however is a minor change in nomenclature, and observing the code that

can be model-based generated and the code actually programmed we highlight that they

are strongly aligned.

Table 7.1 – Similarities between code generation from model and the code actually pro-

grammed by the participant for the Rescue Scenario.
OntoMAS
elements

JaCaMo target
of code generation

Code that can be
auto generated

Programmed by
the participant

2 subclasses of Agent:

Rescuer, Victim

Jason

(see Table 6.5)

2 .asl files, one for

each type of agent
Yes

6 instances of Agent:

4 Rescuers, 2 Victims

JCM file

(see Table 6.8)

Declaration of the

corresponding agents

2 Rescuers and

10 Victims in the

coded .jcm file

4 subclass of Artifact:

Clock, Report, Map, Tent

CArtAgO

(see Table 6.6)

4 .java files, one for

each type of artifact
Yes

8 instances of Artifact:

2 Clocks, 1 Report,

4 Tents, 1 Map

JCM file

(see Table 6.8)

Declaration of the

corresponding artifacts

in the .jcm file

1 Clock,1 Report,

3 Agendas and

16 RescuePlanets in

the coded .jcm file

2 subclass of Group:

MedicalUnit, RescueUnit

Moise

(see Table 6.7)

Declaration of each type

of group in the .xml file
Yes

2 instances of Group:

1 MedicalUnit, 1 RescueUnit

JCM file

(see Table 6.8)

Declaration of all

groups in the .jcm file
Yes

4 instances of Role: Doctor,

Rescuer, Scout, FireFighter

Moise

(see Table 6.7)

Declaration of each

role in the .xml file
Yes

We argue that if the starting codes were created based on converting their corre-

sponding models, then it would be easier for programmers to align their initial code with the

design and continue their programming based on that. The similarities between what can be

automatically generated with what was manually created indicate that the technique of gen-

erating code is aligned in the correct direction. Also, it provides more agility for developers

that have their systems modelled.

In the experiment, conducted in the context of a graduate course, we have ob-

served that the code was more complete that the model, but that was probably due to the

fact that they had to handle the code at the final stage of the course. In other words, some-

times it is the case that new elements are included in the code of the system without being

mentioned in its corresponding model. For example, in the Rescue Scenario highlighted in

Table 7.1, the model defines 2 types of agents, Rescuers and V ictims, which also appear in

the final code, however, 3 additional types of agents were included during the programming:

97

Scouts, Doctors, and FireF ighters. In this sense, the presented results lead to conclude

that it would be interesting to have such proposed model-based code generation. This is

particularly important if the model is given as a specification, then something that has to be

added in the code, that was not in the original model, should appear also in the model, and

as such communicated back to the model designer (in case of different persons working on

modelling and programming).

This Section has described our evaluations on the practical use of the programming

techniques of MAS based on OntoMAS models as implemented in Onto2JaCaMo. Next

Section presents our final remarks about the research in this thesis, which contemplates

a discussion about its possible limitations, stances of MAS not addressed by OntoMAS

models, our current publications, and new research directions for future work.

98

99

8. FINAL REMARKS

“Science may set limits to knowledge, but

should not set limits to imagination."

Bertrand Russell — (1872 - 1970)

Although the advantages of ontologies for MAS have been considered in many

ways, few agent-based systems development platforms currently integrate ontology tech-

niques [FBV17]. The use of ontologies for MAS modelling and development is emerging,

however, ontologies for MAS only cover parts of the whole picture, such as the dimension

of environment or organisation. On the other hand, there are models and MDE approaches

addressing the overall MAS, but without using ontologies, semantic reasoning, or employing

the models during the programming step. This context has led this research to investigate,

to propose, and to evaluate the integration of MDE, MAS, and ontologies. Thus, its funda-

mental idea is the use of ontologies in the model-based design and programming of MAS.

This research claims that the proposed MAS modelling and development approaches

(i.e., OntoMAS and Onto2JaCaMo) increase the flexibility and ease the engineering of agent

systems. First, the MAS starts to be modelled in a single formalism and the ontology allows

to connect and reuse knowledge of one dimension into others, improving the interoperability

of agent platforms. For example, the characteristics of one dimension (e.g., environment)

can be used to define properties on another (e.g., organisational). Our MDE approach also

enables the conversion of MAS defined in ontologies to programming code in specific agent

platforms while remaining flexible enough to accommodate the needs of MAS modellers.

OntoMAS integrates the dimensions of MAS at the semantic level, since they are

already being integrated in the programming level, for example, in JaCaMo [BBH+13]. Agent

programmers benefit from an integration among these ontological levels with each program-

ming dimension since the knowledge represented in one dimension can be reused in an-

other, thus resulting in a greater interoperability of agent platforms. This enables to convert

MAS defined in ontologies to code in specific agent platforms, as done with Onto2JaCaMo.

Also, a system designed with a higher degree of modularity is easier to maintain, given that

it separates different concerns yet enables relations between them. In fact, it is often the

case that the concepts of one level are related to another but current MAS platforms do not

allow for such relations to be explicitly represented [FBV17].

In terms of MAS design, an ontology model provides a global conceptual view

which in combination with MDE can result in tools, for example, to verify model consistency,

perform inferences with semantic reasoners, query instantiated models, develop/visualise

MAS specifications in ontologies, support programming, and so on. As result, developers

obtain new features for developing complex software systems with an infrastructure that

combines and applies modelling, software, and knowledge engineering principles. For ex-

100

ample, MDE can obtain unambiguous definitions from meta-models formally defined in on-

tology languages, and reasoners can validate meta-models automatically or generate MAS

code from models, all of which contribute to more principled ways to develop MAS.

As result of our work in the areas of MDE, ontology, and MAS, the practical eval-

uations of this research provide sufficient evidences to indicate that the use of ontology

facilitates the modelling of MAS, supports agent programming, and provides a basis for rea-

soning about the modelled system. Our experiments help to highlight advantages as well as

limitations and possibilities for improvements in the current state of the proposed techniques.

Future work might make more comparisons about the processes of modelling and program-

ming with standard approaches versus OntoMAS and Onto2JaCaMo, as well as different

analysis of the resulting models and codes. However, the evaluations reported in Sections

5 and 7 provide sufficient evidence (although in a simulated laboratory environment) to sug-

gest that our techniques are feasible and correct for providing useful support for modelling

and coding agent-based software systems.

This thesis has a great focus on JaCaMo as the main target programming platform

for the techniques that it proposes and investigates for covering the code generation and the

modelling capabilities. Limitations in JaCaMo may impact our proposals, as well as whether

new resources appear in JaCaMO, changes may be required in our proposal to keep up

with and reflect such new ideas. JaCaMo is claimed by their authors to be the first suc-

cessful combination of AOP, OOP, and EOP in a specific programming platform [BBH+13].

They recognise that each dimension had been independently developed sufficiently to be

put together in a single platform, however, many open problems in each of these dimen-

sions are also identified [BBH+13]. For example, in AOP, modularity [vRDMdB06] and

debugging [PPW03] are two aspects that still require significant research to ensure prac-

titioners to have the best possible techniques. Similarly, in OOP there are many complex

theories regarding both agent organisations and normative systems [BvdTV08] that are dis-

cussed in the literature which it is not yet implemented in practical platforms. The authors

of JaCaMo [BBH+13] expect that advances in those separate areas of research will be inte-

grated into JaCaMo as soon as they are made sufficiently practical in computational terms.

Therefore, when new techniques become available in programming platforms, the modelling

approaches should evolve together as well to follow such advances.

One could also consider the possibility of applying UML as a substitute to OWL for

describing a given content or domain of knowledge. Some authors argue that UML, in its

original form, provides insufficient support for modelling MAS [dSdL03]. However, it could

be the case that some new extension of UML would enable a suitable application of this

paradigm for agents’ development. It would be also the case that one of these alternative

choices brings different sets of tools to work with, with more advantages in some aspects,

however there would also be drawbacks in other parts. Our work points out an investigation

that considers the use of ontology as an alternative, but we recognise that studies compar-

101

ing different paradigms would be interesting for the communities working on both of them,

specially when considering the application’s context of this work, which is to support AOSE.

8.1 Stances of MAS not Addressed in OntoMAS

There are characteristics of MAS that only begin to exist when a JaCaMo project is

running. These characteristics simply are not tangible while the project is being programmed

(for example, a reference to the execution of a plan or to the execution of a action – since the

code deals with descriptions of these ideas). Thus, the execution of a plan only takes place

when a JaCaMo system is running. In order to represent these views in OntoMAS, new ele-

ments should be included, for example a new concept to represent PlanExecution together

with a property to specify which is its plan specification: PlanExecution is-execution-of

P lan. The same applies to actions and their executions, the existence of goals and beliefs

that appear only after that the system is initialised, the real exchange of messages occur-

ring between individual agents, and so on. Similarly, there are characteristics about the

environment or about the organisation dimension that transcend the initial specification of

MAS, thus fitting into this category of being tangible only when a JaCaMo system is running.

Extensions and future work on OntoMAS may address such run-time issues of MAS.

This work emphasises an ontology for modelling agents, the environment in which

they operate, and the organisation to support the coordination of autonomous agents. A

perspective that is receiving increased attention by researchers in MAS is the idea of in-

teraction. Many researchers in MAS believe that interactions among the agents are crucial

issues to be considered when developing such systems, thus, methodologies to support in-

teractions explicitly are desirable [FBV17]. Interactions include communications, intentions,

obligations, and commitments. The authors of JaCaMo, in [BBH+13], considered a future

work the investigation of interaction as a main dimension to be integrated synergistically with

the other ones. Only in recent work [ZRH16] that JaCaMo is starting to be extended in order

to provide such features, including a new interaction dimension. Considering such context,

the modelling of interactions to extend our ontology would be an interesting future work to

explore. This has not yet been fully addressed so far given how recent such developments

are in the current available programming abstractions provided by the IDEs for JaCaMo.

Another possibility to deal with the interaction concepts would be to incorporate

them into the organisation dimension of MAS. In this way, the organisation dimension would

address ontological support for interactions among the agents, as first-class objects, by

means of protocols and commitments. Existing ontologies for commitments in MAS provide

a conceptual point of view for comprehending advanced organisational details in the form of

interactions and commitments. One of these ontologies [Sin99] defines a commitment as

102

involving a proposition with three participating agents: a debtor, a creditor, and a context

group. Also, different kinds of commitments are defined, such as obligation, taboo, con-

vention, and pledge. It is important to be aware of these high-level conceptual viewpoints

when aiming to integrate such ideas from theory to practice both at the modelling and at the

programming levels.

Currently, Moise implements a limited view of the many advanced theoretical ideas

and possibilities regarding MAS organisations, and so does OntoMAS since they are both

aligned. However, future work could expand and enrich both the modelling and the program-

ming capabilities of these techniques in order to better represent these rich and complex

details regarding social aspects in the development of agent systems. At the programming

level, in JaCaMo, an approach to code “commitment patterns” could be proposed, as well

as new native constructs directly at the development platform. At the modelling level, in

OntoMAS, new concepts to represent commitments, debtors, creditors, and contexts of com-

mitments could be created [FBV17]. In its current version, OntoMAS addresses models of

agent systems that are aligned with JaCaMo and contain, for example, the initial and static

representations of organisations for Moise which are applied to generate code for agent

platforms. It is currently future work to extend the modelling approach to address run-time

characteristics of MAS, such as to represent and monitor organisational properties for when

the modelled system is in execution. This includes, for example, Moise’s notion of an agent

committing to achieve certain goals, a simpler notion than commitments as described above.

8.2 Future Work and New Research Directions

We end this thesis in this subsection that discusses future work and new research

directions. To not sound repetitive, ideas recently mentioned, such as expanding OntoMAS

with concepts of interactions discussed in the previous subsection, are not repeated here.

This research opens possibilities of applying the proposed ontology in many other

ways. In terms of MAS design, such ontology model provides a global conceptual view which

in combination with MDE can result in techniques, for example, to verify model consistency,

perform inferences with semantic reasoners, query instantiated models, develop/visualise

MAS specifications in ontologies, support programming, and so on. As result, develop-

ers obtain new features for developing complex software systems with an infrastructure that

combines and applies modelling, software and knowledge engineering principles. For exam-

ple, MDE can obtain unambiguous definitions from meta-models formally defined in ontology

languages, and reasoners can validate meta-models automatically or generate MAS code

from models, all of which contribute to more principled ways to develop MAS [FBV17]. As fu-

103

ture work, it can be investigated other possibilities of applications and techniques that might

be derived from this research.

We believe that producing software code for complex and highly detailed systems

directly in programming environments without first using any specification, modelling, or

design mechanism may cause many problems [FCVB16]. Without a proper modelling of

the system it can be difficult to find potential bugs when they eventually appear in the im-

plementation. Advantages derived from such approach are techniques for: (i) integrating

design and code; (ii) supporting MAS programming with automatic code generation through

model-based development; and (iii) performing verification with focus on the use of semantic

reasoning and model checking [FBV17].

In order to facilitate the specifications of a MAS in OntoMAS, a graphical user no-

tation could be designed for it. Such notation should define one graphical identification for

each element from the ontology. Then, an environment may be configured so that an inter-

face provides an oriented process based on the proposed guidelines. These would replace

the need of working with an ontology editor, such as Protégé, which was employed during

this research. The ideal would be that the modelling of a project takes place in the same IDE

used for its programming, which in case of JaCaMo is Eclipse. Also, techniques and tools

using OntoMAS could be investigated and reused for other agent programming frameworks

in a similar way that Onto2JaCaMo was investigated for JaCaMo.

One of the main contributions of this thesis is an ontology of agent systems –

OntoMAS – that considers the dimensions of agents, environments, and organisations. This

ontology could be handled by agents using the artifact that we have implemented in other

research of ours [FPH+15, FPH+17]. Thus, agents could reason about other systems, or

even about themselves. This would allow agents to be able to share their implementation

with others or to execute inferences about their own implementation.

As future experiments, it would be interesting to consider more complex, distributed,

and concrete scenarios of software development, for example where teams of software en-

gineers need to work together to develop a single MAS. These teams would be composed

of persons playing different roles such as requirement engineer, designer, programmer, etc.

In this context, it should be investigated how much a modelling approach that is based on

an ontology would help the team to communicate, synchronise, and coordinate the devel-

opment of the desired MAS. Moreover, a viewpoint that should also be considered in future

work is the comparison between using and not using the approach proposed in this thesis

(similar to what is done in experiments conducted on the basis of a control group).

104

8.3 Publications in the Main Theme of this Thesis

Here we briefly explain 5 of the papers produced during this thesis that are directly

related with its main research topic, in a chronological order:

• [FSP+14] 2014. Semantic Representations of Agent Plans and Planning Problem

Domains. International Workshop on Engineering Multi-Agent Systems. Artur Fre-

itas, Daniela Schmidt, Alison R. Panisson, Felipe Meneguzzi, Renata Vieira, Rafael H.

Bordini.

In this paper we explore the use of ontology as semantic representations of agent

plans, which is an important characteristic of the agent dimension.

• [FBMV15] 2015. Towards Integrating Ontologies in Multi-Agent Programming

Platforms. International Conference on Web Intelligence and Intelligent Agent Tech-

nology. Artur Freitas, Rafael H. Bordini, Felipe Meneguzzi, Renata Vieira.

This paper was our first presentation on the idea of using ontologies to integrate ele-

ments from the different dimensions of MAS (agent, environment, and organisation).

• [FSP+15] 2015. Applying Ontologies and Agent Technologies to Generate Ambi-

ent Intelligence Applications. Joint Proceedings Collaborative Agents – Research &

Development, CARE for Intelligent Mobile Services & Agents, Virtual Societies and An-

alytics. Artur Freitas, Daniela Schmidt, Alison R. Panisson, Felipe Meneguzzi, Renata

Vieira, Rafael H. Bordini.

This article continues the investigation on our initial ideas and it was the first time that

we have proposed the mapping of elements from an ontology model to code into the

three dimensions of MAS.

• [FHM+15] 2015. A Multi-Agent Systems Engineering Tool based on Ontologies.

International Conference on Conceptual Modeling. Artur Freitas, Lucas Hilgert, Sab-

rina Marczak, Felipe Meneguzzi, Rafael H. Bordini, Renata Vieira.

This demonstration paper introduces the practical aspects of our model and ontology-

based code transformation techniques for JaCaMo, and their implementations in the

format of a tool as a plug-in for Eclipse to support the development of JaCaMo projects.

105

• [FBV17] 2017. Model-Driven Engineering of Multi-Agent Systems based on On-

tologies. Applied Ontology Journal. Artur Freitas, Rafael H. Bordini, Renata Vieira.

In this journal article we provide a more comprehensive explanation on the details of

the idea investigated in this thesis: techniques for modelling and programming MAS

that are formalised in the OntoMAS ontology and in the Onto2JaCaMo tool. This thesis,

however, provides more details on these techniques, more results of evaluations, a

larger review of literature, more discussions about the investigated approaches, etc.

8.4 Publications in Supplementary Areas of this Thesis

Some papers produced in complementary areas to the main topic of this thesis are

also important to be mentioned, as briefly explained here:

• [PFF+14] 2014. Planning Interactions for Agents in Argumentation-Based Nego-

tiation. International Workshop on Argumentation in Multiagent Systems. Alison R.

Panisson, Giovani Farias, Artur Freitas, Felipe Meneguzzi, Renata Vieira, Rafael H.

Bordini.

In this research it is addressed an approach for planning the interactions of agents in

argumentation-based negotiations so that agents may form their strategy of arguments

more intelligently.

• [PFS+15] 2015. Arguing About Task Reallocation Using Ontological Information

in Multi-Agent Systems. International Workshop on Argumentation in Multiagent

Systems. Alison R. Panisson, Artur Freitas, Daniela Schmidt, Lucas Hilgert, Felipe

Meneguzzi, Renata Vieira, Rafael H. Bordini.

In this paper we investigate the use of ontological information in agent communication,

so that the agents can argue about task reallocations on the basis of an ontology.

• [FPH+15] 2015. Integrating Ontologies with Multi-Agent Systems through CArtAgO

Artifacts. International Conference on Intelligent Agent Technology. Artur Freitas, Ali-

son R. Panisson, Lucas Hilgert, Felipe Meneguzzi, Renata Vieira, Rafael H. Bordini.

This paper proposes and evaluates an implemented mechanism for agents to interact

with ontologies that may be used in any MAS platform that supports CArtAgO.

106

• [SPF+16] 2016. An Ontology-based Mobile Application for Task Managing in

Collaborative Groups. International Florida Artificial Intelligence Research Society

(FLAIRS) Conference. Daniela Schmidt, Alison R. Panisson, Artur Freitas, Rafael H.

Bordini, Felipe Meneguzzi, Renata Vieira.

In this paper, we present an ontology for task representation and its use in the context

of collaborative groups implemented as MAS.

• [FCVB16] 2016. Limitations and Divergences in Approaches for Agent-Oriented

Modelling and Programming. International Workshop on Engineering Multi-Agent

Systems. Artur Freitas, Rafael C. Cardoso, Renata Vieira, Rafael H. Bordini.

This article assesses which are the implications on the combined use of Prometheus

for modelling and JaCaMo for programming using as case study the complex MAS

scenario of the MAPC in 2016. Although the solution developed at PUCRS have won

the MAPC1 of 2016 [CPK+17], we have noticed the need of a modelling approach more

aligned with JaCaMo, as the one investigated in this thesis.

• [FPH+17] 2017. Applying Ontologies to the Development and Execution of Multi-

Agent Systems. Web Intelligence Journal. Artur Freitas, Alison R. Panisson, Lucas

Hilgert, Felipe Meneguzzi, Renata Vieira, Rafael H. Bordini.

This journal paper expands the previous research [FPH+15] of enabling the use of

ontologies to the development and execution of MAS.

1MAPC (Multi-Agent Programming Contest) is an annual competition carried out as an attempt to stimulate

research in the area of MAS programming. Since when it was released, JaCaMo was used by different winning

teams that have competed against several other possible platforms, such as JACK, GOAL, JIAC, Python, Java,

C++, etc. Teams from the Federal University of Santa Catarina (UFSC, Brazil) have won in 2012 using Jason

(JaCaMo [BBH+13] was not published yet), and in 2013 and 2014 using JaCaMo. The scenario in all these

years was called “Agents on Mars”. Then, due to the complexity of developing the new scenario “Agents in the

City”, the contest was pushed to 2016. In 2016 a team from the Pontifical Catholic University of Rio Grande do

Sul (PUCRS, Brazil), which was participating for its first time, won using JaCaMo as well (teams from UFSC

did not participated this year). More information about the MAPC can be found at the official website of the

competition: https://multiagentcontest.org/.

107

REFERENCES

[AGK06] Atkinson, C.; Gutheil, M.; Kiko, K. “On the Relationship of Ontologies and

Models”. In: Proceedings of the 2nd Workshop on Meta-Modelling, 2006, pp.

47–60.

[AK03] Atkinson, C.; Kühne, T. “Model-Driven Development: A Metamodeling

Foundation”, IEEE Software, vol. 20–5, 2003, pp. 36–41.

[BBB+97] Bayardo, Jr., R. J.; Bohrer, W.; Brice, R.; Cichocki, A.; Fowler, J.; Helal, A.;

Kashyap, V.; Ksiezyk, T.; Martin, G.; Nodine, M.; Rashid, M.; Rusinkiewicz, M.;

Shea, R.; Unnikrishnan, C.; Unruh, A.; Woelk, D. “InfoSleuth: Agent-based

Semantic Integration of Information in Open and Dynamic Environments”,

ACM SIGMOD International Conference on Management of Data, vol. 26–2,

1997, pp. 195–206.

[BBH+13] Boissier, O.; Bordini, R. H.; Hübner, J.; Ricci, A.; Santi, A. “Multi-Agent

Oriented Programming with JaCaMo”, Science of Computer Programming,

vol. 78–6, 2013, pp. 747–761.

[BCG07] Bellifemine, F. L.; Caire, G.; Greenwood, D. “Developing Multi-Agent Systems

with JADE”. John Wiley & Sons, 2007, 300p.

[BDW06] Bordini, R. H.; Dastani, M.; Winikoff, M. “Current Issues in Multi-Agent

Systems Development”. In: Engineering Societies in the Agents World,

O’Hare, G. M. P.; Ricci, A.; O’Grady, M. J.; Dikenelli, O. (Editors), 2006, pp.

38–61.

[Béz06] Bézivin, J. “Model Driven Engineering: An Emerging Technical Space”.

In: Generative and Transformational Techniques in Software Engineering,

Springer, 2006, pp. 36–64.

[BHS09] Baader, F.; Horrocks, I.; Sattler, U. “Description Logics”. In: Handbook on

Ontologies, Staab, S.; Studer, R. (Editors), Springer, 2009, pp. 21–43.

[BHW07] Bordini, R. H.; Hübner, J. F.; Wooldridge, M. “Programming Multi-Agent

Systems in AgentSpeak using Jason”. John Wiley & Sons, 2007, 273p.

[BS08] Bromuri, S.; Stathis, K. “Situating Cognitive Agents in GOLEM”. In:

International Workshop on Engineering Environment-Mediated Multi-Agent

Systems (EEMMAS), Weyns, D.; Brueckner, S. A.; Demazeau, Y. (Editors),

2008, pp. 115–134.

108

[Bud04] Budinsky, F. “Eclipse Modeling Framework: A Developers Guide”. Addison-

Wesley, 2004, 680p.

[BvdTV08] Boella, G.; van der Torre, L.; Verhagen, H. “Introduction to the Special Issue

on Normative Multiagent Systems”, Autonomous Agents and Multi-Agent

Systems, vol. 17–1, 2008, pp. 1–10.

[BvHH+04] Bechhofer, S.; van Harmelen, F.; Hendler, J.; Horrocks, I.; McGuinness, D. L.;

Patel-Schneider, P. F.; Stein, L. A. “OWL Web Ontology Language Reference”,

Technical Report, W3C, http://www.w3.org/TR/owl-ref/, 2004.

[Car02] Carson, J. S. “Model Verification and Validation”. In: Proceedings of the 2002

Winter Simulation Conference, 2002, pp. 52–58.

[CPK+17] Cardoso, R. C.; Pereira, R. F.; Krzisch, G.; Magnaguagno, M. C.; Baségio,

T.; Meneguzzi, F. “Team PUCRS: a Decentralised Multi-Agent Solution for the

Agents in the City Scenario”, International Journal of Agent-Oriented Software

Engineering (IJAOSE), 2017, 29p.

[DGMT09] Dastani, M.; Grossi, D.; Meyer, J.-J. C.; Tinnemeier, N. “Normative Multi-agent

Programs and Their Logics”. In: 1st International Workshop on Knowledge

Representation for Agents and Multi-Agent Systems (KRAMAS), Meyer, J.-

J. C.; Broersen, J. (Editors), 2009, pp. 16–31.

[dSdL03] da Silva, V. T.; de Lucena, C. J. “MAS-ML: a Multi-Agent System Modeling

Language”. In: Companion of the 18th Annual ACM SIGPLAN Conference

on Object-oriented Programming, Systems, Languages, and Applications

(OOPSLA), 2003, pp. 304–305.

[FBMV15] Freitas, A.; Bordini, R. H.; Meneguzzi, F.; Vieira, R. “Towards Integrating

Ontologies in Multi-Agent Programming Platforms”. In: Proceeding of the

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology (WI/IAT), 2015, pp. 225–226.

[FBV17] Freitas, A.; Bordini, R. H.; Vieira, R. “Model-Driven Engineering of Multi-Agent

Systems based on Ontologies”, Applied Ontology Journal, vol. 12–2, 2017,

pp. 157–188.

[FCVB16] Freitas, A.; Cardoso, R. C.; Vieira, R.; Bordini, R. H. “Limitations and

Divergences in Approaches for Agent-Oriented Modelling and Programming”.

In: 4th International Workshop on Engineering Multi-Agent Systems (EMAS),

Baldoni, M.; Müller, J. P.; Nunes, I.; Zalila-Wenkstern, R. (Editors), 2016, pp.

88–103.

109

[FHM+15] Freitas, A.; Hilgert, L.; Marczak, S.; Meneguzzi, F.; Bordini, R. H.; Vieira,

R. “A Multi-Agent Systems Engineering Tool based on Ontologies”. In: 34th

International Conference on Conceptual Modeling, 2015, 4p.

[FPH+15] Freitas, A.; Panisson, A. R.; Hilgert, L.; Meneguzzi, F.; Vieira, R.; Bordini,

R. H. “Integrating Ontologies with Multi-Agent Systems through CArtAgO

Artifacts”. In: Proceeding of the IEEE/WIC/ACM International Conference on

Web Intelligence and Intelligent Agent Technology (WI/IAT), 2015, pp. 143–

150.

[FPH+17] Freitas, A.; Panisson, A. R.; Hilgert, L.; Meneguzzi, F.; Vieira, R.; Bordini,

R. H. “Applying Ontologies to the Development and Execution of Multi-Agent

Systems”, Web Intelligence Journal, vol. 15–4, 2017, pp. 291–302.

[FSP+14] Freitas, A.; Schmidt, D.; Panisson, A.; Meneguzzi, F.; Vieira, R.; Bordini, R. H.

“Semantic Representations of Agent Plans and Planning Problem Domains”.

In: 2nd International Workshop on Engineering Multi-Agent Systems (EMAS),

Dalpiaz, F.; Dix, J.; van Riemsdijk, M. (Editors), 2014, pp. 351–366.

[FSP+15] Freitas, A.; Schmidt, D.; Panisson, A.; Meneguzzi, F.; Vieira, R.; Bordini,

R. H. “Applying Ontologies and Agent Technologies to Generate Ambient

Intelligence Applications”. In: Joint Proceedings Collaborative Agents –

Research & Development, CARE for Intelligent Mobile Services & Agents,

Virtual Societies and Analytics, Koch, F.; Meneguzzi, F.; Lakkaraju, K.; Ahmad,

M.; Sukthankar, G. (Editors), 2015, pp. 22–33.

[GH02] Grundy, J.; Hosking, J. “Software Tools”. In: Encyclopedia of Software

Engineering, John Wiley Sons, Inc., 2002, 1929p.

[GNFC12] Gascueña, J. M.; Navarro, E.; Fernández-Caballero, A. “Model-Driven

Engineering Techniques for the Development of Multi-Agent Systems”,

Engineering Applications of Artificial Intelligence, vol. 25–1, 2012, pp. 159–

173.

[Gru93] Gruber, T. R. “A Translation Approach to Portable Ontology Specifications”,

Knowledge Acquisition Journal, vol. 5–2, 1993, pp. 199–220.

[HB11] Horridge, M.; Bechhofer, S. “The OWL API: A Java API for OWL Ontologies”,

Semantic Web Journal, vol. 2–1, 2011, pp. 11–21.

[HBKR10] Hübner, J. F.; Boissier, O.; Kitio, R.; Ricci, A. “Instrumenting Multi-Agent

Organisations with Organisational Artifacts and Agents”, Autonomous Agents

and Multi-Agent Systems, vol. 20–3, 2010, pp. 369–400.

110

[HWDC09] Hadzic, M.; Wongthongtham, P.; Dillon, T.; Chang, E. “Ontology-based Multi-

Agent Systems”. Springer, 2009, 274p.

[KB08] Klapiscak, T.; Bordini, R. H. “JASDL: A Practical Programming Approach

Combining Agent and Semantic Web Technologies”. In: Proceedings

of the 6th International Workshop on Declarative Agent Languages and

Technologies (DALT), 2008, pp. 91–110.

[KB15] Kravari, K.; Bassiliades, N. “A Survey of Agent Platforms”, Journal of Artificial

Societies and Social Simulation, vol. 18–1, 2015, 18p.

[KKK+06] Kappel, G.; Kapsammer, E.; Kargl, H.; Kramler, G.; Reiter, T.; Retschitzegger,

W.; Schwinger, W.; Wimmer, M. “Lifting Metamodels to Ontologies: A Step to

the Semantic Integration of Modeling Languages”, Model Driven Engineering

Languages and Systems, vol. 4199, 2006, pp. 528–542.

[Lik32] Likert, R. “A Technique for the Measurement of Attitudes”, Archives of

Psychology Journal, vol. 22–140, 1932, pp. 1–55.

[MAB+14] Mascardi, V.; Ancona, D.; Barbieri, M.; Bordini, R. H.; Ricci, A. “CooL-

AgentSpeak: Endowing AgentSpeak-DL Agents with Plan Exchange and

Ontology Services”, Web Intelligence and Agent Systems, vol. 12–1, 2014,

pp. 83–107.

[Mus15] Musen, M. A. “The Protégé Project: A Look Back and a Look Forward”, AI

Matters, vol. 1–4, 2015, pp. 4–12.

[MVBH06] Moreira, A. F.; Vieira, R.; Bordini, R. H.; Hübner, J. F. “Agent-Oriented

Programming with Underlying Ontological Reasoning”. In: Proceedings

of the 3rd International Workshop on Declarative Agent Languages and

Technologies (DALT), 2006, pp. 155–170.

[OVBdRC06] Okuyama, F. Y.; Vieira, R.; Bordini, R. H.; da Rocha Costa, A. C. “An Ontology

for Defining Environments within Multi-Agent Simulations”. In: Workshop on

Ontologies and Metamodeling in Software and Data Engineering, 2006, 10p.

[PB09] Pokahr, A.; Braubach, L. “A Survey of Agent-Oriented Development Tools”. In:

Multi-Agent Programming: Languages, Platforms and Applications, Bordini,

R. H.; Dastani, M.; Dix, J.; El Fallah Seghrouchni, A. (Editors), Springer US,

2009, pp. 289–329.

[PFF+14] Panisson, A. R.; Farias, G.; Freitas, A.; Meneguzzi, F.; Vieira, R.; Bordini,

R. H. “Planning Interactions for Agents in Argumentation-Based Negotiation”.

In: 11th International Workshop on Argumentation in Multiagent Systems

(ArgMAS), 2014, 15p.

111

[PFS+15] Panisson, A. R.; Freitas, A.; Schmidt, D.; Hilgert, L.; Meneguzzi, F.; Vieira, R.;

Bordini, R. H. “Arguing about Task Reallocation using Ontological Information

in Multi-Agent Systems”. In: 12th International Workshop on Argumentation in

Multiagent Systems (ArgMAS), 2015, 16p.

[PGSF06] Pavón, J.; Gómez-Sanz, J.; Fuentes, R. “Model Driven Development of

Multi-Agent Systems”. In: Model Driven Architecture – Foundations and

Applications, Rensink, A.; Warmer, J. (Editors), Springer Berlin Heidelberg,

2006, Lecture Notes in Computer Science, vol. 4066, pp. 284–298.

[PPW03] Poutakidis, D.; Padgham, L.; Winikoff, M. “An Exploration of Bugs and

Debugging in Multi-Agent Systems”. In: International Symposium on

Methodologies for Intelligent Systems, Zhong, N.; Ras, Z. W.; Tsumoto, S.;

Suzuki, E. (Editors), 2003, pp. 628–632.

[PTW05] Padgham, L.; Thangarajah, J.; Winikoff, M. “Tool Support for Agent

Development Using the Prometheus Methodology”. In: 5th International

Conference on Quality Software (QSIC), 2005, pp. 383–388.

[PTW08] Padgham, L.; Thangarajah, J.; Winikoff, M. “The Prometheus Design Tool

– A Conference Management System Case Study”. In: 8th International

Workshop on Agent-Oriented Software Engineering (AOSE), Luck, M.;

Padgham, L. (Editors), 2008, pp. 197–211.

[PW03] Padgham, L.; Winikoff, M. “Prometheus: A Methodology for Developing

Intelligent Agents”. In: Agent-Oriented Software Engineering III, Giunchiglia,

F.; Odell, J.; WeiB, G. (Editors), 2003, pp. 174–185.

[Roe12] Roebuck, K. “Model-Driven Architecture (MDA): High-Impact Strategies -

What You Need to Know: Definitions, Adoptions, Impact, Benefits, Maturity,

Vendors”. Emereo Publishing, 2012, 548p.

[RVO06] Ricci, A.; Viroli, M.; Omicini, A. “CArtAgO: An Infrastructure for Engineering

Computational Environments in MAS”. In: 3rd International Workshop

Environments for Multi-Agent Systems (E4MAS), Weyns, D.; Parunak, H.

V. D.; Michel, F. (Editors), 2006, pp. 102–119.

[Sel03] Selic, B. “The Pragmatics of Model-Driven Development”, IEEE Software,

vol. 20–5, 2003, pp. 19–25.

[Sin99] Singh, M. P. “An Ontology for Commitments in Multiagent Systems: Toward

a Unification of Normative Concepts”, Artificial Intelligence and Law, vol. 7–1,

1999, pp. 97–113.

112

[SPF+16] Schmidt, D.; Panisson, A. R.; Freitas, A.; Bordini, R. H.; Meneguzzi, F.; Vieira,

R. “An Ontology-based Mobile Application for Task Managing in Collaborative

Groups”. In: 29th International Florida Artificial Intelligence Research Society

(FLAIRS) Conference, 2016, pp. 522–525.

[SPG+07] Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; Katz, Y. “Pellet: A Practical

OWL-DL Reasoner”, Journal of Web Semantics, vol. 5–2, 2007, pp. 51–53.

[SWGP10] Staab, S.; Walter, T.; Groner, G.; Parreiras, F. “Model Driven Engineering

with Ontology Technologies”. In: Reasoning Web. Semantic Technologies for

Software Engineering, Abmann, U.; Bartho, A.; Wende, C. (Editors), Springer

Berlin / Heidelberg, 2010, Lecture Notes in Computer Science, vol. 6325, pp.

62–98.

[TL08] Tran, Q.-N. N.; Low, G. “MOBMAS: A Methodology for Ontology-based Multi-

agent Systems Development”, Information and Software Technology Journal,

vol. 50–7-8, 2008, pp. 697–722.

[UBSA10] Urovi, V.; Bromuri, S.; Stathis, K.; Artikis, A. “Initial Steps Towards Run-

Time Support for Norm-Governed Systems”. In: International Workshop

on Coordination, Organizations, Institutions, and Norms in Agent Systems

(COIN), Vos, M. D.; Fornara, N.; Pitt, J. V.; Vouros, G. A. (Editors), 2010,

pp. 268–284.

[UH14] Uez, D. M.; Hübner, J. F. “Environments and Organizations in Multi-Agent

Systems: From Modelling to Code”. In: 2nd International Workshop on

Engineering Multi-Agent Systems (EMAS), 2014, pp. 181–203.

[vRDMdB06] van Riemsdijk, M. B.; Dastani, M.; Meyer, J.-J. C.; de Boer, F. S. “Goal-

Oriented Modularity in Agent Programming”. In: Proceedings of the 5th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), Nakashima, H.; Wellman, M. P.; Weiss, G.; Stone, P. (Editors),

2006, pp. 1271–1278.

[Win05] Winikoff, M. “Jack Intelligent Agents: An Industrial Strength Platform”. In:

Multi-Agent Programming: Languages, Platforms and Applications, Bordini,

R. H.; Dastani, M.; Dix, J.; El Fallah Seghrouchni, A. (Editors), Springer, 2005,

Multiagent Systems, Artificial Societies, and Simulated Organizations, vol. 15,

pp. 175–193.

[Zar12] Zarafin, A.-M. “Semantic Description of Multi-Agent Organizations”, Master’s

Thesis, Automatic Control and Computers Faculty, Computer Science and

Engineering Department – Politehnica University of Bucharest, 2012, 50p.

113

[ZH14] Zatelli, M. R.; Hübner, J. F. “The Interaction as an Integration Component for

the JaCaMo Platform”. In: 2nd International Workshop on Engineering Multi-

Agent Systems (EMAS), 2014, pp. 431–450.

[ZRH16] Zatelli, M. R.; Ricci, A.; Hübner, J. F. “Integrating Interaction with Agents,

Environment, and Organisation in JaCaMo”, International Journal of Agent-

Oriented Software Engineering (IJAOSE), vol. 5–2-3, 2016, pp. 266–302.

114

115

APPENDIX A – GUIDELINES FOR PROJECT CONCEPTION USING

ONTOMAS

The system has to be specified in three dimensions: Agent, Environment, and

Organisation. It is possible to start in any dimension since they will be interconnected in

the end. The agent dimension specifies mainly the types of agents, plans, actions, agent

goals, beliefs, and messages. The environment dimension specifies mainly the spaces,

types of resources in the environment, their operations and observable properties. The

organisation dimension specifies mainly groups, roles, missions, organisational goals, and

norms to regulate the behaviour of the agents that participate in such organisation.

Taking in account the agent dimension, consider the following:

• Which are the types of agents in your system? For each type, create a subclass of

Agent. Each subclass of Agent corresponds to a .asl file. Each concrete agent (an

instance) should have at least one of these types.

• Restrictions applicable to every agent of a type should be specified as “subclass of

restrictions”, such as: (Builder subclass of Agent) and (Builder subclass of has-plan

value buildHouse). This example states that every instance of Builder agents has the

plan to build a house.

• Conceive situations in which the system being designed will be applied. These can be

considered as purposes, use cases, functionalities, scenarios, things to be achieved,

and so on. This guideline suggests that these things must be represented as goals

that agents will pursue in the system. Each goal must be modelled as an instance of

the Goal concept.

• Conceive which individual agents you initially need. Create instances for each subclass

of Agent that your system requires to accomplish the desired tasks.

• Consider which types of information would be required to achieve each goal. In-

formation that agents get from the environment becomes instance of Percept Beliefs;

information that agents get from other agents becomes Agent Beliefs; and information

that an agent can conclude by itself from internal reasoning.

• Since your agents act in an environment to achieve their goals, consider which ac-

tions your agents could perform in their environments. Then, create one instance to

represent each type of action.

• Agents require a method to handle each goal to be achieved and each expected reac-

tion to a belief. These are the plans known by the agents. Instances of plans must be

116

created. These plans must be associated with their triggering conditions, with actions

that they may perform, and to which agent that should include such plans.

• Agents can send and receive messages during their existence. Consider which types

of messages each agent would need to send or receive. Create one instance to rep-

resent each type of messages. Use relations to say that “agent sends message” and

“message has receivers”.

Taking in account the environment dimension, consider the following:

• Consider the types of artifacts in your system. For each type, create a subclass of

Artifact. Each subclass of Artifact corresponds to a .java file. Each concrete artifact

(an instance) should have at least one of these types.

• Restrictions applicable to every agent of a type should be specified as subclass of re-

strictions, such as: (Printer subclass of Artifact) and (Printer subclass of has-operation

value print). It states that every instance of Printer has the operation to perform print.

• Conceive which resources agents can interact with (operate and/or observe), those

will become the available artifacts in the environment. Each concrete artifact is mod-

elled as an instance of a subclass of Artifact.

• Conceive which actions are available in the environment, those will become the op-

erations of some artifact. Create the operations provided by artifacts as instances of

Operation. Connect the instance of an artifact with an instance of operation through

the “has operation” property to indicate which operations an artifact has. In code, each

operation of an artifact will result in a method in its Java class.

• Conceive which information can be obtained from the environment, those will become

observable properties of some artifact. Create instances of observable property and

connect them with instances of artifacts using the relation named “has property”. In

code, each observable property is a percept that the artifact should update.

• Conceive if there are special locations in your environment. These are the spaces

where your agents and artifacts are situated and can occupy. Agents can only operate

and observe artifacts if they share a location. Create instances of Space as desired in

order to organise your environment. In the coding platform, spaces represent the idea

of workspaces.

Taking in account the organisation dimension, consider the following:

• Consider the types of groups in your system. For each type, create a subclass of

Group. Each subclass of Groups corresponds to a group (abstractly). Each concrete

group (an instance) should have at least one of these types.

117

• Restrictions applicable to every group of a type should be specified as subclass of

restrictions, such as: (FootballTeam subclass of Group) and (FootballTeam subclass

of contains role value goalkeeper). It states that every instance of FootballTeam should

contain the role goalkeeper.

• Conceive if there are tasks that require the collaboration or coordination for their exe-

cutions. These tasks are referred as missions and are composed of goals. Create the

types of missions as instances.

• Organisational goals are part of missions. Consider which individual agent goals are

part of missions. Create the goals as instances.

• Consider that your agents could adopts some roles. Roles are used to form groups,

receive missions, and be regulated by norms. Hierarchy of roles is allowed (a role spe-

cialises other role, and thus inherit its characteristics). Create the roles as instances.

• Your agents that adopt roles can be organised in concrete groups. You have to create

the groups as instances of the subclasses of Groups.

• Your organisation can be regulated by norms. Consider if there are some obligation,

prohibition or permission for each role in the organisation. Create the norms as in-

stances of some of the subclasses of Norm.

Taking in account the integration among agents and environments, consider the

following:

• Consider that your agents can interact with some artifacts. To do so, they must be

focused on them, so they are allowed to execute operations and perceive observable

properties. Use this property to relate that: Agent is-focused Artifact.

• Consider that your agents and artifacts are situated in spaces. Normally, for each of

these elements should be set to where they are initially located. To do so, use the

property: Agent is-in Space.

Taking in account the integration among agents and organisations, consider the

following:

• You can have individual agents adopting roles. For each instance of (subclasses of)

Agent consider if your want them to adopt one or more of the available roles. This can

be done using the property: Agent adopts-role Role.

• Groups are composed of your individual agents. For each instance of (a subclasses of)

Group specify its members. To do so, use the property: Group contains-agent Agent.

118

119

APPENDIX B – HELLO WORLD SPECIFICATION AS USED IN THE

EXPERIMENTS

This specification was used as our learning scenario and delivered to the par-

ticipants as follows. Your task is to use a modelling approach to initiate the design of a

Multi-Agent System (MAS). Consider that the JaCaMo programming platform is going to be

the coding framework for your solution. You have two alternatives for modelling your MAS:

OntoMAS or Prometheus.

The specification of the MAS is as follows. The system should have only one unique

type of agent. From this requirement, the initial application will have four agents that will print

different hello world messages. The source code for all of them will be the same (a Jason .asl

file), but they will have different names and different initial beliefs. The four agents (named

francois, maria, giacomo, and alice) share the same program file hello.asl, and each agent

will have an initial belief message(“xxxxx”) corresponding to the message that it should use

to say hello. The agent francois believes in message(“Bonjour”); the agent maria believes in

message(“Bom dia”); the agent giacomo believes in message(“Buon giorno”); and the agent

alice believes in message(“Good morning”).

The hello.asl agents have a plan that can be read by the agent as “whenever I

have the goal !start and I believe in message(X), I will achieve this goal by doing .print(X).

X is a variable that gets value by matching message(X) with some agent’s belief. If the

agent belief is message(“Bom dia”), the value of X will be “Bom dia”. If this plan cannot be

used (because the agent does not believe in message(X)), then other plan is used and it

executes the command .print(?hello world!?). The expected result for your system, so far, is

the following:

The environment of this application is quite simple, it has a graphical display artifact

where agents can print messages and perceive the number of already printed messages.

The artifact has thus one observable property (numMsg) and one operation (printMsg(String)).

Initially all agents will share the same display artifact and latter we will have displays in sev-

eral countries.

The type of this artifact is referred as GUIConsole. Your project will have to create

an instance of the display artifact and named it gui. This artifact will be placed in a workspace

identified by jacamo. In order to perceive this artifact, the agents need to focus on it. This is

why we add for each agent a focus instruction focusing on the artifact gui in the workspace

jacamo. In the plan that performs print in the agent source code (file hello.asl), include the

printMsg operation which is provided by the gui artifact. When the agent uses the artifact

operation, its message is printed in the gui artifact, and when the agent uses the .print action,

the message is displayed in the Jason MAS Console.

120

Figure B.1 – Console of Hello World implemented until this point.

Instead of having a shared display artifact, we will now create one display artifact

for each country. Since artifacts are inside workspaces, we will also create a workspace for

each country (france, italy, brazil, and usa). In order to perceive the artifacts (by focusing

on them), the agents should be placed in their proper workspaces: francois in france, maria

in brazil, giacomo in italy, and alice in usa. Each agent is focusing on the artifact of its

workspace. The expected result for your system, so far, is the following:

We will change our example so that the printing of "Hello World" will be a coor-

dinated task for our four agents: each agent will print one character of the message. For

instance, francois will print the “H”, maria the “e”, giacomo the “l”, and so on. Notice that it is

very important that they coordinate for the task, for instance, maria should print the "e" only

after francois has printed the "H". One way to coordinate the execution of joint tasks is by

mean of an organisation. In JaCaMo the organisation is programmed based on the Moise

model, where groups, roles, missions, goals, global plans, and schemes are defined. Our

organisation has one global goal print_hello that is decomposed into several sub-goals, one

for each letter. The sub-goals have to be achieved in sequence, so that the message will be

printed correctly.

These goals are distributed to the agents by means of missions (a set of goals an

agent can commit to). The following missions are proposed:

• print_vowel: the agent responsible for this mission will print the vowels of the message.

• print_l: the mission to print the character l.

• print_consonant: the mission to print the remaining consonants.

• print_special_chars: the mission to print spaces and exclamation marks.

121

Figure B.2 – Console of Hello World using artifacts.

Figure B.3 – Illustrating a mission of the desired Hello World organisation.

The combination of goals, plans and missions is called a social scheme in Moise.

In our example, the social scheme is identified by hello_sch. The diagram shown above, in

Moise notation, represents the social scheme. Before committing to the missions, the agents

have to play roles in the group responsible for the social scheme. As illustrated in Figure B.4

using Moise notation, a group should be defined with roles corresponding to the missions:

• rv: the agent playing this role is obliged to commit to the mission print_vowel.

• rl: the role obliged to commit to the mission print_l.

• rc: the role obliged to commit to the mission print_consonant.

• rs: the role obliged to commit to the mission print_special_chars.

122

Figure B.4 – Illustrating a group of the desired Hello World organisation.

Based on this specification, francois will play role rv, maria the role rl, giacomo the

role rc, alice the role rs in the group jacamo_team which is of type team. This group is

responsible for executing the social scheme hello_eng of type hello_sch.

The expected result for your system, considering the organisation, is the following:

Figure B.5 – The console output resulting from this Hello World scenario.

123

APPENDIX C – GOLD MINERS SPECIFICATION AS USED IN THE

EXPERIMENTS

This specification was used as our experiment scenario and delivered to the par-

ticipants as follows. Your task is to use modelling approaches to initiate the design of a

Multi-Agent System (MAS). Consider that JaCaMo is going to be the coding framework for

your solution. You have two alternatives for modelling your MAS: OntoMAS or Prometheus.

This textual specification describes a problem, and your design should include as much de-

tail as possible in order to facilitate the life of the programmers following your models. Things

that you should consider for improving the level of detail of the solution that you will propose:

• Think about which strategies could be used and formalize them in your models.

• Think about the characteristics of your system in terms of required and desirable char-

acteristics for your agents, environment and organisation.

• Always have in mind that your models should be for JaCaMo-oriented implementation.

Scenario. Recently, rumours about the discovery of gold became public and

hordes of gold miners appear in the hope to collect as much gold nuggets as possible.

You have a small team of gold miners exploring the area, avoiding trees, and competing for

the gold nuggets spread around the woods. Your gold miners? team coordinates its actions

in order to collect as much gold as possible, while competing with an unknown opponent

team. Your miners have to deliver the gold in a depot so it can be safely stored.

Technical Description. In each simulation, the simulation server works in a cyclic

fashion: it provides sensory information about the environment to the participating agents

and expects agent’s reaction within a given time limit. Each agent reacts to the received

sensory information by indicating which action (including the skip action) it wants to perform

in the environment. If no reaction is received from the agent within the given time limit, the

simulation server assumes that the agent performs the skip action. Agents have only a local

view on their environment, i.e., their perceptions can be incomplete. After a finite number

of steps the simulation server stops the cycle and participating agents receive a notification

about the end of a match.

Team, Match, and Simulation. An agent team consist of 4 software agents with

distinct IDs. Each simulation in a match starts by notifying the agents from the participating

teams and distributing them the details of the simulation. These will include for example

the size of the grid, depot position, and the number of steps the simulation will perform. A

simulation consists of a number of simulation steps. Each step consists of:

1. sending sensory information to agents (one or more), and

124

Figure C.1 – Gold Miners execution illustrated.

2. waiting for their actions.

In the case that agent will not respond within a timeout (specified at the beginning of the

simulation) by a valid action, it is considered to perform the skip action in the given simulation

step.

Environment objects. The (simulated) environment has its size specified at the

start of each simulation (it is variable). However, it cannot be more than 100x100 cells. The

[0,0] coordinate of the grid is in the top-left corner (north-west). The depots serve for both

teams as a location of delivery of gold items. The environment can contain the following

elements in its cells:

• obstacle (a cell with an obstacle cannot be visited by an agent)

• gold (an item which can be picked from a cell)

• agent

• depot (a cell to which gold items are to be delivered to earn a simulation point)

There can be only one object in a cell, except that an agent can enter cells containing gold,

or depot. At the beginning of a simulation the grid contains obstacles, gold items and agents

125

of both teams. Distribution of obstacles, gold items and initial positions of agents can be

either hand crafted for the particular scenario, or completely random. During the simulation,

gold items can appear randomly (with a uniform distribution) in empty cells of the grid. The

frequency and probability of gold generation will be simulation specific, however not known

to neither agents, nor participants. At the start of each simulation agents will get details of

the environment (grid size, depot position, etc.). Agents will get information about their initial

position in the perception information of the first simulation step.

Perception. Agents are located in cells of the grid and the simulation server pro-

vides each agent the following information: absolute position of the agent in the grid the

content of the cells surrounding the agent and the content of the cell in which the agent

currently stands in (9 cells in total)

Actions. Agents are allowed to perform one action in a simulation step. Agents do

not get immediate feedback on their actions, but can learn about the effects of their actions

(and the actions of other agents) from the perception information that will be sent to them

in the next simulation step. All actions, except the skip action, can fail. An action can fail

because the conditions for its successful execution are not fulfilled. The result of a failed

action is the same as the result of the skip action. The following actions are allowed:

• move east, move north, move west and move south: An agent can move in four di-

rections in the grid. The execution of move east, move north, move west, and move

south changes the position of the agent one cell to the left, up, right, and down, re-

spectively. A movement action succeeds only when the cell to which an agent is about

to move does not contain another agent or obstacle. Moving to and from the depot cell

is regulated by additional rules described later in this description.

• pick: An agent can pick up a gold item if 1) the cell in which an agent currently stands

in contains the gold, and 2) the agent is currently not carrying another gold item. An

agent can carry only one gold item which it successfully picked up before. The result

of a successful pick action is that in the next simulation step the acting agent will be

considered to carry a gold item and the cell, it currently stands in, will not contain the

gold item any more.

• drop: An agent can drop the gold item it carries only in the cell it currently stands

in. The result of a drop action is that the acting agent is not carrying the gold item

any more and that the cell it currently stands in will contain the gold item in the next

simulation step. Dropping a gold item to a depot cell increases the score of the agent’s

team by one point. The depot cell will never contain a gold item that can be picked by

an agent.

• skip: The execution of the skip action does not change the state of the environment

(under the assumption that other agents did not change it). When an agent does not

126

respond to a perception information provided by the simulation server within the given

time limit, the agent is considered as performing the skip action.

Depot cell. There are strong conditions imposed on the depot cell:

1. an agent not carrying a gold item is unable to enter the depot cell (the result of such

an action is the same as if the depot was an obstacle);

2. agent which entered the depot cell should drop the gold item as the very next action it

execute;

3. after dropping the gold item in a cell, an agent has to leave the cell in the first subse-

quent simulation step when he will be able to move (i.e. when there was an empty cell

at the time of agent’s move action). If an agent does not leave the depot in the first

possible opportunity, or will not drop the gold item as the very next action after entering

the depot, the simulation server will punish it by “teleporting” it away (it will be moved to

a random cell not containing another agent, or obstacle in the grid by the environment

simulator).

127

APPENDIX D – DRAG-AND-DROP TRANSFORMATIONS FROM

ONTOMAS TO JACAMO

The transformations of drag-and-drop are defined as follows:

• An instance of the ExternalAction concept becomes, in:

– Jason, an external action invocation inside a plan’s body that represents an agent

acting in the environment. The action may contain zero or more parameters and

programmers have to complete using the parenthesis. This construction uses the

following format:

actionName();

– CArtAgO, an operation invocation within a method which represents an artifact

executing the given operation, which also may receive parameters inside the

parenthesis, according with the following format:

operationName();

– Moise or JCM file, it is not applicable for drag-and-drop code transformations.

• An instance of the InternalAction concept becomes, in:

– Jason, an internal action invocation inside a plan’s body that represents an action

that an agent performs as part of its reasoning cycle, in the format:

.actionName();

– CArtAgO, Moise or JCM file, it is not applicable for drag-and-drop code transfor-

mations in this case.

• An instance of a subclass of the Agent concept becomes, in:

– Jason, the corresponding agentName, which identifies an individual agent in or-

der to send messages, or perform some other tasks.

– CArtAgO, the corresponding agentName in a string format, which identifies an

individual agent so the environment may be programmed to react accordingly.

– JCM file, an instantiation of an individual agent of type agentType with the identi-

fication agentName which can be configured by some parameters in the format:

agent agentName : agentType.asl { parameters }

In some cases, depending on the context, only the agentName may be required.

– Moise, it is not applicable for drag-and-drop code transformations in this case.

128

• An instance of the Belief concept (or one of its subclasses) becomes, in:

– Jason, a belief addition event using the given beliefName and source in the format

described below. The value in the source is defined by the belief’s subtype: self,

percept, or other agent. If the programmer wants to remove that belief instead of

adding it, then the + symbol must be replaced for −. Also, in the context of a plan,

the beliefName(ParameterList) could be used to query parameter values for the

given type of belief.

+beliefName[source(value)];

– CArtAgO, an update in the value of the corresponding observable property in

the format given below, if it is a percept-type belief. For beliefs of other sources,

e.g. self or another agent, there is no related code to be generated regarding the

environment.

getObsProperty(perceptName).updateV alue(newV alue);

– JCM file, the definition of a belief identified as beliefName that may be used for

example as initial beliefs parameters of a given instantiated agent in the format

given below, if it is a self-type belief. For beliefs of other sources, e.g. percept or

another agent, there is no related code to generated regarding the initial configu-

ration file.

beliefs : beliefName

– Moise, it is not applicable for drag-and-drop code transformations in this case.

• An instance of the AchievementGoal concept becomes, in:

– Jason, an achievement goal on the format given below that means one of the

following two alternatives, depending on the context: (i) if dropped outside a plan

body, then it is an initial goal for that agent; or (ii) if dropped inside a plan body,

then it is a goal that has to be achieved during the execution of that plan.

!achievementGoalName;

– CArtAgO, an information that artifacts can send to agents in order to initiate the

achievement of a goal in the form of:

signal(!achievementGoalName);

– JCM file, the definition of an initial goal identified as goalName that can be as-

signed to agent instances in the format:

goals : goalName

– Moise, it is not applicable for drag-and-drop code transformations in this case.

129

• An instance of the TestGoal concept becomes, in:

– Jason, a test goal that may be dropped inside a plan body to represent a goal

that has to be tested during the execution of that plan. The format is as follows:

?testGoalName;

– CArtAgO, an information that artifacts can send to agents in order to initiate the

test of a goal in the form of:

signal(?testGoalName)

– Moise or JCM file, it is not applicable for drag-and-drop code transformations in

this case.

• An instance of the Message concept, or one of its subclasses, becomes, in:

– Jason, the act of sending the corresponding instance of message in the format

given below, where the value of receiver is obtained from the ontology represen-

tation, and the illocutionaryForce value is obtained from the instance type. There

are 9 illocutionary forces, one for each subclass of Message in the ontology: tell,

untell, achieve, unachieve, tellHow, untellHow, askOne, askAll, and askHow.

The (propositional) concent of messages may be instances of beliefs, goals, or

plans.

.send(receiver, illocutionaryForce, content);

– CArtAgO, a signal where an artifact requests the sending of the corresponding

message in the format:

signal(!send(receiver, act, value));

– Moise or JCM file, it is not applicable for drag-and-drop code transformations in

this case.

• An instance of the Plan concept becomes, in:

– Jason, a plan in the format given below, in which it has a triggering condition,

a context (that by default is true), and a body composed (mainly) of actions and

goals.

is_triggered_by : true <− actions; goals.

– CArtAgO, a signal with the triggering condition corresponding to that plan in the

format:

signal(triggeringCondition);

– Moise, the description of how the plan is decomposed in its goals as follows:

130

< plan operator = “sequence” >< goal id = “goalN”/ >< /plan >

– JCM file, it is not applicable for drag-and-drop code transformations in this case.

• An instance of the Space concept becomes, in:

– Jason, an action for that agent to join the corresponding workspace according

with the following format:

joinWorkspace(“workspaceName”);

– CArtAgO, an update to the position of this artifact in the format:

updatePosition(new AbstractWorkspacePoint());

– JCM file, the definition of a workspace with the given spaceID which can be

configured by some parameters in the format:

workspace spaceID { parameters }

– Moise, it is not applicable for drag-and-drop code transformations in this case.

• An instance of a subclass of the Artifact concept becomes, in:

– Jason, the action of focusing on that instance of artifact identified by the token

artifactName using the following format:

focus(artifactName);

– CArtAgO, the declaration and initialisation of a new instance identified by the

token individualName and belonging to the type ClassName according to the

following format:

ClassName individualName = new ClassName();

– JCM file, an instantiation of an artifact of type className with the identification

artifactName in the format:

artifact artifactName : className()

– Moise, it is not applicable for drag-and-drop code transformations in this case.

• An instance of the Operation concept becomes, in:

– Jason, the invocation of the corresponding operationName in the body of a plan

representing the execution of that operation by an agent such as follows:

operationName();

– CArtAgO, the invocation of the given operation in the format given below which

represents an artifact executing the related operation:

131

operationName();

– Moise or JCM file, it is not applicable for drag-and-drop code transformations in

this case.

• An instance of the ObservableProperty concept becomes, in:

– Jason, a plan triggered by the observation of the corresponding property identi-

fied as propertyName in the format:

+propertyName : true <− planBody.

If dropped in the middle of a plan, then just the corresponding belief identified by

propertyName may be generated.

– CArtAgO, an update in the value of propertyName according with the following

syntax:

getObsProperty(propertyName).updateV alue(newV alue);

– Moise or JCM file, it is not applicable for drag-and-drop code transformations in

this case.

• An instance of the ObservableEvent concept becomes, in:

– Jason, a plan triggered by the observation of the corresponding event identified

as eventName in the format:

+eventName : true <− planBody.

– CArtAgO, the generation of a signal identified as eventName, which may be ob-

served by the agents focused in artifacts of the corresponding type, with the fol-

lowing syntax:

signal(eventName);

– Moise or JCM file, it is not applicable for drag-and-drop code transformations in

this case.

• An instance of a subclass of the Group concept becomes, in:

– Jason, an action of joining in the given group identified by groupName in the

format join_group(groupName); or it may be suggested the action of creating an

instance of that group as follows:

create_group(groupName);

– JCM file, the definition of a group of the type groupType with the given groupName

identification which can be configured by some parameters in the format:

132

group groupName : groupType { parameters }

– CArtAgO or Moise, it is not applicable for drag-and-drop code transformations in

this case.

• An instance of the Role concept becomes, in:

– Jason, the action for an agent plan where it adopts the instance of role defined

by the token roleName in the group identified by groupName according with the

following syntax:

adopt_role(roleName, groupName);

– Moise, a role definition specified by roleName which may extend some role re-

ferred as extendsRole in the format:

< role id = “roleName” >< extends role = “extendsRole”/ >< /role >

– JCM file, the definition that an agent will be playing the given role defined by

roleName in the group identified by groupName, as specified in the format:

roles : roleName in groupName

– CArtAgO, it is not applicable for drag-and-drop code transformations in this case.

• An instance of the Mission concept becomes, in:

– Jason, an action to commit with the instance of mission identified by missionName

in the scheme defined as schemeId. That action may be placed in the body of a

plan and it follows the format:

commit_mission(missionName, schemeId);

– Moise, the specification of the mission defined as missionName which contains

a set of goals ranging from goal1 until goalN in the following format:

< mission id = “missionName” min = “1” max = “1” >< goal id =

“goal1”/ > ... < goal id = “goalN”/ >< /mission >

– CArtAgO or JCM file, it is not applicable for drag-and-drop code transformations

in this case.

• An instance of the Norm concept becomes, in:

– Jason, a plan triggered by the perception of the norm identified by normName in

the format:

+normName : true <- planBody.

133

– Moise, the specification of the norm referred as normName which targets a role

and a mission identified by the tokens targetRole and targetMission in the format:

< norm id = “normName” type = “” role = “targetRole” mission =

“targetMission”/ >

– CArtAgO or JCM file, it is not applicable for drag-and-drop code transformations

in this case.

• An instance of the OrganisationGoal concept becomes, in:

– Jason, a plan triggered by the addition event of the goal identified by goalName

according with the syntax:

+!goalName : true <− planBody.

– Moise, a specification of a goal referred to as goalName in the following format:

< goal id = “goalName”/ >

– CArtAgO or JCM file, it is not applicable for drag-and-drop code transformations.

134

135

APPENDIX E – TEMPLATE CODE GENERATION FROM ONTOMAS

SPECIFICATIONS

The transformations to generate template code for JaCaMo are defined as follows:

• A subclass of the Agent concept becomes, in:

– Jason, a new .asl file that contains all related elements such as plans, goals, and

beliefs is generated for each subclass of Agent.

– JCM file, the sources that agent instances are allowed to have are given by the

subclasses of Agent in the ontology.

– CArtAgO or Moise, it is not directly applicable for automatic code generation in

this case.

• An instance of one of the subclasses of Agent becomes, in:

– JCM file, a declaration that instantiates an agent of type className with the

identification agentID, which can be configured by some parameters in the format:

agent agentID : className.asl { parameters }

– Jason, CArtAgO or Moise, it is not directly applicable for automatic code gener-

ation in this case.

• An instance of the Belief concept (or one of its subclasses) becomes, in:

– Jason, an initial belief in the corresponding .asl file (the agent type is defined by

the related subclass of agent). The belief may be annotated with [source(value)],

where the value is defined by the belief’s subtype: self, percept, or other agent.

The adopted syntax is as follows:

beliefName[source(value)]

– JCM file, an initial belief of the related instances of agents in the corresponding

individual agents’ definition.

– CArtAgO or Moise, it is not directly applicable for automatic code generation.

• An instance of the AchievementGoal concept becomes, in:

– Jason, an initial achievement goal in the corresponding .asl file, where the agent

type is defined by the related subclass of agent.

136

– JCM file, an initial achievement goal of the related instances of agents in the

corresponding individual agents’ definition.

– CArtAgO or Moise, it is not directly applicable for automatic code generation in

this case.

• An instance of the Message concept becomes, in:

– Jason, a plan to send the corresponding message in the format given below,

where the value of receiver is obtained from the ontology representation, and the

illocutionaryForce value is obtained from the instance type. There are 9 illocution-

ary forces, one for each subclass of Message in the ontology: tell, untell, achieve,

unachieve, tellHow, untellHow, askOne, askAll, and askHow. The (propositional)

concent of messages may be instances of beliefs, goals, or plans. A plan for the

agent receiver may be created taking as triggering condition the consequences of

receiving such concent in the given illocutionaryForce.

!sendMsgName <− .send(receiver, illocutionaryForce, content);

– CArtAgO, Moise or JCM file, it is not directly applicable for automatic code gen-

eration in this case.

• An instance of the Plan concept becomes, in:

– Jason, a plan in the format given below in which it has a triggering condition, a

context (that by default is true), and a body composed (mainly) of actions and

goals. The plan is inserted in the .asl file of the corresponding type of agent that

has it.

is_triggered_by : true <− actions, goals.

– CArtAgO, Moise or JCM file, it is not directly applicable for automatic code gen-

eration in this case.

• Instances of the concepts Action, InternalAction, ExternalAction, and TestGoal are

not directly applicable for automatic code generation in any dimension of JaCaMo.

However, these instances are used when converting entities of Plan to code.

• An instance of the Space concept becomes, in:

– JCM file, the definition of a workspace with the given spaceID which can be

configured by some parameters in the format:

workspace spaceID { parameters }

137

– Jason, CArtAgO or Moise, it is not directly applicable for automatic code gener-

ation in this case.

• A subclass of the Artifact concept becomes, in:

– CArtAgO, Each subclass of Artifact generates a new .java file composed with all

related elements such as operations, and observable properties.

– JCM file, the sources that artifact instances are allowed to have are given by the

subclasses of Artifact in the ontology.

– Jason or Moise, it is not directly applicable for automatic code generation in this

case.

• An instance of any subclass of the Artifact concept becomes, in:

– JCM file, an instantiation of an artifact of type className with the identification

artifactName in the format given below, in which it should be placed inside a

declaration of a workspace.

artifact artifactName : className()

– Jason, CArtAgO or Moise, it is not directly applicable for automatic code gener-

ation in this case.

• An instance of the Operation concept becomes, in:

– CArtAgO, a method representing the operation, with the specified operationName,

in the form given below that may contain zero or more parameters.

@OPERATION void operationName(){}

– Jason, Moise or JCM file, it is not directly applicable for automatic code genera-

tion in this case.

• An instance of the ObservableProperty concept becomes, in:

– CArtAgO, the definition of the corresponding observable property propertyName

inside the init method in the class of the corresponding artifact in the following

format:

defineObsProperty(“propertyName”, value);

– Jason, Moise or JCM file, it is not directly applicable for automatic code gener-

ation in this case. However, a plan triggered by the addition event of the related

observable property could be suggested to programmers of the agents as a situ-

ation that could be desired to be handled.

138

• An instance of the ObservableEvent concept becomes, in:

– Jason, it may be suggested (however, it is not mandatory) a plan triggered by the

observation of the corresponding event identified as eventName in the format:

+eventName : true <− planBody.

– CArtAgO, the artifact’s class code may indicate that this signal can be sent by

this artifact. This would be implemented as exemplified below considering an

observable event identified by eventName.

signal(eventName);

– Moise or JCM file, it is not directly applicable for automatic code generation in

this case.

• A subclass of the Group concept becomes, in:

– Moise, a declaration of a group specification identified by groupName that con-

tains all related roles in the format:

< group − specification id = “groupName” >< role id = “role1”/ > ... <

role id = “roleN”/ >< /group− specification >

– Jason, CArtAgO or JCM file, it is not directly applicable for automatic code gen-

eration in this case.

• An instance of any subclass of Group becomes, in:

– JCM file, the definition of a group of the type className with the given groupID

identification which can be configured by some parameters in the format:

group groupID : className { parameters }

– Jason, CArtAgO or Moise, it is not directly applicable for automatic code gener-

ation in this case.

• An instance of the Role concept becomes, in:

– Moise, a role definition specified by roleName which may extend some role re-

ferred as extendsRole in the format:

< role id = “roleName” >< extends role = “extendsRole”/ >< /role >

– JCM file, the definition that an agent will be playing the given role defined by

roleName in the group identified by groupName, as specified in the format:

roles : roleName in groupName

– Jason or CArtAgO, it is not directly applicable for automatic code generation.

139

• An instance of the Mission concept becomes, in:

– Moise, the specification of the mission defined as missionName which contains

a set of goals ranging from goal1 until goalN in the following format:

< mission id = “missionName” min = “1” max = “1” >< goal id =

“goal1”/ > ... < goal id = “goalN”/ >< /mission >

– Jason, CArtAgO or JCM file, it is not directly applicable for automatic code gen-

eration in this case.

• An instance of the Norm concept becomes, in:

– Moise, the specification of the norm referred as normName which targets a role

and a mission identified by the tokens targetRole and targetMission in the format

given below. The normType is defined by the subclass of the Norm concept:

obligation, prohibition, or permission.

< norm id = “normName” type = “normType” role = “targetRole”

mission = “targetMission”/ >

– Jason, CArtAgO or JCM file, it is not directly applicable for automatic code gen-

eration in this case.

• An instance of the OrganisationGoal concept becomes, in:

– Moise, a specification of a goal referred to as goalName in the following format:

< goal id = “goalName”/ >

– Jason, CArtAgO or JCM file, it is not directly applicable for automatic code gen-

eration in this case.

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

