
A Distributed Online Multi-Agent Planning System

Rafael C. Cardoso and Rafael H. Bordini
School of Informatics – FACIN-PPGCC

Pontifical Catholic University of Rio Grande do Sul (PUCRS)
Porto Alegre – RS – Brazil

{rafael.caue@acad.pucrs.br, rafael.bordini@pucrs.br}

Abstract

Multi-agent planning is an important capability to have
in the development of multi-agent systems, which still
remains an open problem, mainly because of the gap
between planning and execution. Multi-agent systems
often have dynamic environments that require planning
to be done during run-time (i.e., online planning). In this
paper, we use a platform for the development of multi-
agent systems (JaCaMo) in both decentralised multi-
agent planning and execution stages, providing a multi-
agent system with capabilities to solve online multi-
agent planning problems. The contributions shown in
this paper are: i) the design of a Distributed Online
Multi-Agent Planning System (DOMAPS); ii) the im-
plementation of DOMAPS in JaCaMo; and iii) initial
experiments in the Floods domain, a novel planning do-
main that uses heterogeneous unmanned vehicles to re-
spond to flood disasters.

1 Introduction
Multi-Agent Systems (MAS) are often situated in dynamic
environments where new plans of actions need to be con-
stantly devised in order to successfully achieve the sys-
tem’s goals. Therefore, employing planning techniques dur-
ing run-time of a MAS can be used to improve agent’s plans
using knowledge that was not previously available, or even
to create new plans to achieve some goal for which there was
no known course of action at design time.

Research on automated planning has been mostly focused
on single-agent planning over the years. Although it is pos-
sible to adapt centralised single-agent techniques to work in
a decentralised way, such as in (Crosby, Jonsson, and Rovat-
sos 2014), distributed computation is not the only advantage
of using Multi-Agent Planning (MAP).

In MAP, by allowing agents to do their own individual
planning (i.e., planning by multiple agents), the search space
can be effectively pruned, which can potentially decrease
planning time on domains that are intrinsically distributed.
This also means that agents get to keep some (or even full)
privacy from other agents in the system, as they might have
beliefs, goals, and plans that they do not want to share with
other agents. The output of a MAP process are plans for mul-
tiple agents. Single-agent planning for multiple agents can
have no privacy, since the planner needs all the information

available, and the agents in the problem representation are
usually considered as any other object of the environment.
These differences are characterised in Table 1, based on the
descriptions found in (Durfee and Zilberstein 2013).

MAS went through a similar process of transitioning from
single to multiple agents, albeit at a faster rate. Recent re-
search, as evidenced in (Boissier et al. 2011; Singh and
Chopra 2010), shows that considering other programming
dimensions such as environments and organisations as first-
class entities along with agents allow developers to create
more complex MAS.

In this paper, we introduce the design of our Dis-
tributed Online Multi-Agent Planning System (DOMAPS).
DOMAPS is composed of: i) a formalism for the represen-
tation of domains and problems in online multi-agent plan-
ning, based on Hierarchical Task Network (HTN); ii) a con-
tract net protocol mechanism for goal allocation; iii) indi-
vidual planning with the SHOP2 planner; and iv) the use of
social laws to coordinate the agents during execution. Some
preliminary results from experiments in a novel scenario, the
Floods domain, are shown.

Although approaches to online single-agent planning usu-
ally involve some kind of interleaving planning and exe-
cution, we focus on domains that allow agents some time
to plan while the system is still in execution (i.e., anytime
planning). DOMAPS allows for the dynamic execution of
plans found during run-time, making it easy to transition
from planning into execution and vice-versa, while still per-
mitting agents to continue their execution, as long as their
actions are believed not to cause any conflict with actions
from a possible solution.

In DOMAPS current configuration, during the planning
stage the environment is assumed to be deterministic and
fully observable (although each agent has its own perspec-
tive of the environment). However, in the execution stage
we do not make these assumptions, the environment can be
non-deterministic and actions can fail, in which case it may
be necessary to replan.

The remainder of the paper is structured as follows. In
the next section a brief description of the MAS development
platform, JaCaMo, used to implement DOMAPS and run the
agents and the MAS is given. Section 3 introduces the initial
design of the Distributed Online Multi-Agent Planning Sys-
tem. Next, in Section 4, we describe the implementation of

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

15



Table 1: Comparisons between single-agent planning and multi-agent planning.

computation privacy agent
abstraction

single-agent planning
for a single agent centralised not needed not needed

single-agent planning
for multiple agents centralised none objects

multi-agent planning
for a single agent decentralised none or partial not needed

multi-agent planning
for multiple agents decentralised partial or full first-class entities

DOMAPS in JaCaMo. In Section 5, we describe the Floods
domain, and some initial experiments of using DOMAPS in
this domain. We follow with a discussion on related and fu-
ture work, and end the paper with some concluding remarks.

2 Background
DOMAPS was designed for online systems, thus, requiring
the use of planning techniques whilst the MAS is running.
Therefore, we need a MAS development platform in order
to properly implement and evaluate DOMAPS. We chose
to use the JaCaMo1 (Boissier et al. 2011) MAS develop-
ment platform, since it contains programming abstractions
that we found to be a suitable match for the implementa-
tion of DOMAPS – organisation, environment, and agent
abstractions.

JaCaMo combines three separate technologies into a plat-
form for MAS programming that makes use of multiple
levels of abstractions, enabling the development of robust
MAS. Each technology (Jason, CArtAgO, and Moise) was
developed separately for a number of years and are fairly
established on their own when dealing with their respective
abstraction level (agent, environment, and organisation).

Moise (Hübner, Sichman, and Boissier 2007) handles the
organisation level, and how to specify an organisation in a
MAS. This level adds first-class elements to the MAS such
as roles, groups, organisational goals, missions, and norms.
Agents can adopt roles in the organisation, forming groups
and sub-groups. Missions are defined to achieve the organi-
sation goals. The behaviour of the agents that adopt roles to
execute these missions is guided by norms.

Jason (Bordini, Wooldridge, and Hübner 2007) is respon-
sible for the agent level. It is an extension of the AgentSpeak
language, based on the BDI architecture. Agents in Jason re-
act to events in the system by executing actions on the en-
vironment, according to the plans available in each agent’s
plan library.

CArtAgO (Ricci et al. 2009) is based on the A&A (Agents
and Artefacts) model (Omicini, Ricci, and Viroli 2008), and
deals with the environment level. Artefacts are used to rep-
resent the environment, storing information about the envi-
ronment as observable properties and providing actions that
can be executed through operations. Agents can focus on
specific artefacts in order to obtain information contained

1http://jacamo.sourceforge.net/.

on that artefact. When an agent focuses on an artefact, it re-
ceives the observable properties as beliefs, and it is able to
execute the artefact’s operations.

Figure 1: The JaCaMo overview (Boissier et al. 2011).

An overview of how JaCaMo combines these different
levels of abstraction can be observed in Figure 1. In the
top-most level, the organisation dimension is composed of
a scheme, a set of missions, and a set of roles. These roles
are adopted by the agents that inhabit the agent dimension.
In the bottom-most dimension, the environment houses arte-
facts that represent objects and information about the en-
vironment, grouped by workspaces that agents can access.
These workspaces can be distributed across multiple net-
work nodes, providing the distribution of the MAS.

3 The Distributed Online Multi-Agent
Planning System

Our framework, the Distributed Online Multi-Agent Plan-
ning System (DOMAPS), consists of four main components:
planning formalism – a formal representation of the infor-
mation from the planning domain and problem that will be
used during planning; goal allocation – the mechanism used
to allocate goals to agents; individual planning – the plan-
ner used during each agent’s individual planning stage; and
coordination mechanism – used before or after planning to

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

16



avoid possible conflicts that can be generated during plan-
ning.

DOMAPS was made to work as a general-purpose
domain-independent system, and as such, we expect to turn
it into an open platform where many other alternatives for
main components can be added, allowing MAS developers
and researchers to pick and choose the ones that work better
to solve their online multi-agent planning problem.

The design overview of DOMAPS is shown in Figure 2.
Multiple agents (a1, a2, ..., an) interact with an environment
to obtain information and carry out their actions. These
agents are part of an organisation where they can adopt roles,
follow norms, and receive role-related missions, while pur-
suing the organisation’s goals. These aspects are what repre-
sent the MAS part of the application.

Figure 2: DOMAPS design overview.

Planning input (i.e., domain and problem representation)
and output (i.e., the solution) are regulated by a planning
formalism. The agents themselves plan individually, using
an appropriate planner for the planning problem at hand.
Coordination is used in order to achieve the organisational
goals of the system. For example, goals that depend on joint
plans involving multiple agents, or an agent’s actions that
can cause conflict with the other agents’ plans. Since we are
dealing with planning during run-time (online), new organ-
isational goals can emerge (or their conditions can change)
during the execution of the MAS. Therefore, we also use a
mechanism to allocate these organisational goals to the ap-
propriate agents, that is, allocate them to the agents that have
an estimated better chance at solving that particular goal.

During execution, the creation of new organisational
goals can start the planning process in DOMAPS, which
consists of the following steps:

1. Allocate goals: Agents gain access to the organisational
goals that will be planned for. Then, a mechanism is used
to separate and allocate goals to agents that have the most
(estimated) chance of finding a potential solution to the
goal.

2. Obtain up-to-date information needed for planning:
Environment and world information need to be collected
from the MAS in execution, and translated into a planning

formalism that can be used by the planner. Since planners
work individually, each agent passes its input to their re-
spective planner. Thus, the information that a planner has
access to is limited to the information that the agent is
allowed to access during that exact moment in the exe-
cution. Consequently, this ensures, at least, some partial
privacy in DOMAPS.

3. Agents start their individual planner: The planner
starts its search for a solution to the allocated goal, or set
of goals.

4. Coordination before or after planning: Agents coordi-
nate with each other before or after the planning process,
in order to prevent any conflicts or help solve any depen-
dencies.

5. Translate solution: Each agent translates the solution
found by their respective planners into plans that can be
added to their plan library. If we are dealing with coor-
dination after planning, then any points of conflict or de-
pendency found along the way should be sent to the co-
ordination mechanism. Otherwise, when coordination is
done before planning, the solution should already be free
of conflicts and dependencies.

Another goal that we have with DOMAPS, is to allow the
addition of new approaches to each of the four main com-
ponents more easily, that way it is possible to choose the
approach that is more suited for a particular problem. Next,
we describe the initial approach used for each component,
and discuss alternative approaches in Section 6.

3.1 Planning Formalism
We developed the Multi-Agent Hierarchical Task Network
(MA-HTN) formalism, which is an extension of the single-
agent HTN formalism used in the SHOP2 planner (Nau et
al. 2003). MA-HTN is intended for online multi-agent plan-
ning problems, since domain and problem information have
to be collected during execution. Agents use a translator
to parse their information about the world into domain and
problem specifications that is then passed to their own indi-
vidual planner. The MA-HTN grammar for the problem and
domain representation, as well as the translator’s specifica-
tion, can be found in (Cardoso and Bordini 2016).

Each agent has their own problem and domain specifi-
cation. This provides a decent level of privacy on its own,
since each planner only has access to their respective agent
problem and domain specifications. This means that, unlike
some of the other multi-agent planning formalisms, MA-
HTN does not need to have private or public blocks. Al-
though at some point it might be interesting to add the ca-
pability to include private goals, for now we are interested
only on searching solutions for organisational goals.

Actions from other agents can cause conflicts, either at
the moment that the action is executed (e.g., concurrent ac-
tions) or in the future (e.g., durative actions). Actions that
can cause conflict have to be annotated by the MAS de-
veloper, in order for the translator to identify them. Like-
wise, dependencies between actions can also exist, either as
a concurrent action that requires another agent or as actions

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

17



that depend on the actions of other agents to happen first.
These dependency relations also have to be annotated by
the MAS developer, so that the translator can add them to
the specification. Both conflicts and dependencies specifica-
tions are used by the coordination mechanism to coordinate
the agents.

3.2 Goal Allocation
A Contract Net Protocol (CNP) mechanism is used to allo-
cate goals to agents in DOMAPS. Our CNP mechanism is
based on the original CNP design of Reid G. Smith (Smith
1980), with a few modifications in order to accommodate
our needs for a goal allocation mechanism in the context of
MAP. The initiator in our case is the organisation. It is the
organisation’s role to start new auctions for organisational
goals that do not have any known plans on how to achieve
the goals, or for organisational goals that have plans, but
need to be re-planned. The bidders are agents from the or-
ganisation that also participate in the planning process.

The logic for determining an agent’s bid depends on the
rest of the mechanisms being used in DOMAPS and in the
MAS development platform, but it is fair to assume that
agents have the ability of checking their plan library for
plans that are able to decompose, at least at some level, the
goal that is being auctioned. Although domain-dependent
functions for determining the bid can, generally, provide bet-
ter results, we supply a simple domain-independent general-
purpose function that agents can use to determine their bid,
shown in Algorithm 1.

The agent checks if the announcement of the goal came
from the organisation and if it is eligible, according to the el-
igibility criteria provided in the announcement, or otherwise
decides not to bid. If the agent chooses to proceed with the
bid, then, he keeps decomposing the goal into subtasks and
incrementing the bid by 1 for each level that was success-
fully decomposed, either until it is close to the deadline, or it
arrived in an action that could achieve the goal, or it found a
dead end (in which case the bet becomes empty). The recur-
sion indicates the backtrack when there are no more levels.

The initiator allocates the goal to the agent with the low-
est (not empty) bid. We found that the lowest bid heuristic
had better results in our initial experiments, as opposed to
using the highest bid heuristic. Our logic behind using the
lowest, is that it indicates that lower bids from agents, with
different plan libraries and who were able to arrive at final
decompositions, means that they can arrive at the solution
using the lowest number of actions. However, for homoge-
neous agents with similar plan libraries and who were not
able to fully explore their plan library, the selection of the
highest bid may yield better results, since it would represent
the agent who could decompose the furthest. We assume
here that every goal can eventually be allocated, meaning
that there is at least one agent eligible (and capable) for each
organisational goal.

Regarding plan decomposition, agents do not check the
plan’s context (preconditions), nor does it uses any action
theory to simulate future states. It simply decomposes into
the first plan found in the plan library, and then, proceeds
to decompose into any first plan found in the body of the

Algorithm 1 Domain-independent algorithm for determin-
ing an agent’s bid.

function bid (bid-value, from, goal, eligibility, deadline)
if ((from 6= organisation) or (not eligible)) then

return bid-value← ∅
else

while ((close to deadline) or (no more levels available
to decompose)) do

decompose one level of one task from goal
bid-value← bid-value + 1
if deadend then

return bid-value← ∅
end if

end while
if close to deadline then

return bid-value
end if
if there are more levels available to decompose then

bid (bid-value, from, goal, eligibility, deadline)
end if
return bid-value

end if

original plan. Once there are no more levels to decompose,
the agent backtracks to the original plan and chooses another
branch, if there is one.

3.3 Individual Planner
SHOP2 (Nau et al. 2003) is a HTN planner with support
for anytime planning. No modifications were made to the
actual planning algorithm and search heuristics of SHOP2.
Instead, we use the mechanisms from the other components
to handle the multi-agent part of the planning process. By
making little to no modifications to the individual planners,
DOMAPS benefits from its multi-layered approach, making
it easier to swap components without having to modify the
planner’s code directly.

Many parameters can be used to tweak the SHOP2 plan-
ner. The most relevant to DOMAPS is the parameter that
guides which kind of search will be made:

• first: depth-first search that stops at the first plan found.

• shallowest: depth-first search for the shallowest plan, or
the first such plan if there are more than one.

• id-first: iterative-deepening search that stops at the first
plan found.

3.4 Coordination Mechanism
Social laws can coordinate agents by placing restrictions on
the activities of the agents within the system. The purpose of
these restrictions are twofold: it can be used to prevent some
destructive interaction from taking place; or it can be used
to facilitate some constructive interaction.

The design of social laws is domain-dependent, and we
require them to be supplied by the system designer offline
(i.e., they are provided before planning). We apply the social

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

18



laws for the coordination of agents after planning, during
execution.

In the original model of Shoham and Tennen-
holtz (Shoham and Tennenholtz 1995), social laws were
used to restrict the activities of agents so as to ensure that
all individual agents are able to accomplish their personal
goals. We follow a similar idea, although agents here aim
to achieve organisational goals, and thus, are naturally
compelled to follow the social laws that are present in the
system.

We formally define social laws in our model as:

Definition 1 Given a set of agents Ag, a set of actions
Ac, a set of states S, a set of preconditions P, and a set of
options Θ, a social law is a tuple (ag,ac,s,P,Θ) where ag
∈ Ag, ac ∈ Ac, and s ∈ S.

A social law sl constrains a specific action ac of agent
ag, considered to be a possible point of conflict (as estab-
lished in the operator description from the MA-HTN for-
malism). When the state s satisfies each precondition ρi ∈
P, the agent is given all possible options θi ∈ Θ. Although
not explicitly present in this model, the null action (i.e., do
nothing) can be a possible option, but in order for it to be
viable it needs to have been established as an action in the
MAS.

4 Multi-Agent System Integration
We implemented the domaps.plan internal action to start
the DOMAPS planning process – internal actions are actions
that Jason agents can execute internally, as opposed to exter-
nal actions, which are environment-related. These internal
actions are implemented as Java classes that agents can call.

To illustrate the run-time of DOMAPS when the
domaps.plan internal action is executed, consider the
overview provided in Figure 3. When an agent calls
domaps.plan, it goes through phase 1 and activates the
contract net protocol mechanism to allocate organisational
goals between the agents. Then, in phase 2, each agent
knowledge about the world is passed to a MA-HTN trans-
lator, that sends the information needed to SHOP2 for the
individual planning that takes place in phase 3. The solution
found by each agent’s planner goes back through the MA-
HTN translator again, translating the solution into AgentS-
peak Jason plans. Finally, the solution is carried out by the
agents, in accordance to the social laws (phase 5) that are
associated with the actions that can cause conflicts.

4.1 MA-HTN
Each agent uses a MA-HTN translator in order to parse the
current information obtained from the CArtAgO environ-
ment artefacts, as well as from their own personal artefact,
and the plans from its plan library. The MA-HTN transla-
tor generates a problem and domain representation for each
agent, as follows:

• Problem representation: The name of the problem and
the name of the domain are obtained dynamically. The
name of the agent is the one who started the translator.

Figure 3: DOMAPS run-time overview of the
domaps.plan internal action.

The information collected from the CArtAgO artefacts are
parsed into the agent’s facts and initial states. The goal list
is created from the organisational goals that were assigned
to this particular agent during the goal allocation phase.

• Domain representation: The name of the domain is ob-
tained dynamically. The name of the agent is the one who
started the translator. Operators are parsed from all of the
artefacts operations that the agent has access to. The pre-
conditions are obtained from any conditional tests in an
operation, the delete and add list are acquired from the
deletion and addition of observable properties, respec-
tively. The conflict and dependency lists need to be pre-
viously annotated into the operation in order for them to
be able to be parsed. The methods are parsed from all of
the plans in the agent’s plan library, with the precondi-
tions parsed from the context of the plan, and the task list
parsed from the body of the plan.

4.2 Contract Net Protocol
The contract net protocol artefacts mediate the goal alloca-
tion phase of DOMAPS. The mechanism is represented by
two artefacts: the TaskBoard artefact and the ContractNet-
Board artefact. All of the agents that will participate in the
planning stage take the roles of bidders. The bidders should
always focus on the TaskBoard, as that is the artefact in
which the organisational goals are announced. The role of
initiator is restricted to the organisation. When the initiator
announces an auction for a new organisational goal, it cre-
ates a ContractNetBoard associated with that goal.

We show the observable properties and operations of the
TaskBoard and the ContractNetBoard artefacts in Figure 4.
When a new new task is announced by the initiator, a task
observable property is created. A link interface includes the
set of operations that can be executed by other artifacts.
Thus, link operations cannot be accessed by agents, but only
by linking artifacts. Therefore, only the organisation arte-
fact, as the initiator, can announce goals in the TaskBoard.
When the auction process ends, the initiator performs the

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

19



clear operation to delete the observable property associated
with that goal. This also generates an event in Jason, a belief
deletion event, in which agents can perform clean-up and
some other necessary activities.

Figure 4: The task board and CNP board artefacts.

A ContractNetBoard is created for each goal announced
by the initiator. The bidder agents focus on these new arte-
facts as soon as they perceive that a new goal was an-
nounced. The task description contains an organisational
goal, deadline is the time (in milliseconds) that the auction
will run for, state informs if the auction is still open or not,
and winner is created by the initiator once the auction ends
with the id of the bid that won the auction.

The operation bid is executed by bidders in order to place
a bid for the goal associated with the artefact. award is a
linked operation executed by the initiator. It updates the win-
ner observable property, based on a value function. The get-
Bids is a linked operation executed by the initiator, return-
ing all bids currently placed by the bidders, to be used in the
award operation.

There are also two internal operations, checkDeadline and
checkAllBids. Both internal operations update the state ob-
servable property to closed, if the deadline is up or if all
agents have already placed a bid. Internal operations are not
available to be used by agents or other artefacts. Instead,
the artefact’s operations themselves can trigger the asyn-
chronous execution of internal operations.

4.3 SHOP2
We did not modify directly any of the SHOP2 code. We pro-
vide a startPlanner Java class that uses the default Java run-
time environment to start a new process that executes an Al-
legro CL script in order to run SHOP2. The Java class is
implemented as an internal action that is executed by Jason
agents when they enter their individual planning stage.

4.4 Social Laws
In Figure 5, we show the observable properties and opera-
tions of the SocialLaws artefact. This artifact is responsible
for coordinating the agents during the execution of a solu-
tion found during the planning process. It is created during
the system’s initialisation, one instance for each social law.

The observable properties are: social law contains the
name of the social law; action name is the name of the ac-

tion that is associated with this social law artefact; precondi-
tion list is the list of preconditions that make this social law
applicable; and action options contains the list of possible
actions that an agent may take in order to avoid a conflict, or
to solve a dependency.

Figure 5: The artefact for social laws.

We also provide operations related to the manipulation of
social laws, although there is no mechanism implemented
to make use of these operations yet. The create operation
allows the creation of another instance of SocialLaws. The
delete operation erases the current instance of SocialLaws.
And the modify operation permits to alter the values of the
observable properties in the instance of SocialLaws that the
operation was used.

Regarding the practical usage of the artefact, agents con-
sult the SocialLaws artefact associated with the action that
they are about to execute. This process is only necessary for
actions that are part of the plans adopted as a solution from
the planning stage, and only if those actions are annotated
with conflict and/or dependency flags.

5 The Floods Domain
The lack of complex multi-agent domains led us to design
a new domain, in order to best exploit the advantages of
MAP and MAS. The inspiration for this specific domain
came from a real-world scenario on using artificial intelli-
gence techniques (e.g., a team of autonomous multi-robots)
to help mitigate and prevent natural disasters. This scenario
is specifically targeted at flood disasters, often caused by in-
tense hydro-meteorological hazards, that can lead to severe
economic losses and in some extreme cases even deaths.

Our domain, the Floods domain, is based on that real-
world scenario. Another source of inspiration was the Rover
domain, which was used in several past International Plan-
ning Competitions (IPCs). In the floods domain, a team
of autonomous and heterogeneous robots are dispatched to
monitor flood activity in a region. The Centre for Disaster
Management (CDM) establishes a base of operation in the
region that is being monitored. The base is used to assign
goals to the robots, receive and interpret data, and provide
some assistance. The CDM is usually operated by humans,
but in our JaCaMo+DOMAPS implementation we simulate

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

20



them by using agents, capable of creating dynamic goals
during run-time.

Figure 6: Elements from the Floods domain.

In Figure 6, we show the elements that compose the
Floods domain. The domain takes place in a particular re-
gion, which is divided into several interconnected areas.
Movement through the region occurs from traversing these
areas. Flood events are common in the region, especially
during heavy-rain. These floods can be observed from spe-
cific areas in the region. The areas can be connected by a
water path, that can be traversed by naval units, and/or by
a ground path, that can be traversed by ground units. Water
sample can be requested to be collected from certain areas.
During flood events, victims may be detected and in need of
assistance. The CDM establishes a base of operations in one
of the areas in the region.

Finally, the naval units are composed of Unmanned Sur-
face Vehicles (USVs) that can move through areas connected
by water paths, collect water samples, and take pictures of
flood events. Meanwhile, the Unmanned Ground Vehicles
(UGVs) are ground units that are able to move through areas
connected by ground paths, take pictures of flood events, and
provide assistance to victims by transporting first-aid kits to
first responders close by. The robots can only perceive other
robots that are in the same area.

5.1 Initial Experiments
For the initial experiments presented here, we maintained
the number of agents and focused on increasing the number
of goals. It seems that there is a relation between the number
of goals and the number of agents. For most domains, hav-
ing the number of goals equal to the number of agents, and
assuming that each agent is capable of solving its associated
goal, appears to result in faster planning times. In Table 2 we
show the some initial experiments on this domain for small
problems with 4, 8, 16, and 32 goals. As the number of goals
surpasses the number of agents, the planning time approxi-
mates to that of single-agent SHOP2.

The results are shown in regards to time spent planning,
and the number of state expansions and inferences that were
made during planning. These results do not depict any of the
run-time features of DOMAPS, as we are still investigating
how to evaluate it as a whole, and considering what evalu-

ation parameters that could be used both for planning and
execution in tandem.

Table 2: Initial experiment results.
DOMAPS SHOP2usv1 usv2 ugv1

floods 4
pl. time 0.001 0.001 0.001 0.004

exp. 8 8 15 65
inf. 13 13 21 186

floods 8
pl. time 0.001 0.001 0.002 0.011

exp. 15 15 29 129
inf. 21 21 37 360

floods 16
pl. time 0.002 0.002 0.004 0.033

exp. 29 29 57 257
inf. 37 37 69 708

floods 32
pl. time 0.003 0.003 0.005 0.095

exp. 57 57 113 513
inf. 69 69 133 1404

It is natural for DOMAPS to have faster planning times
than regular SHOP2 since we assign goals to agents before
planning, while SHOP2 does so during planning, in order
to try different assignments. In future experiments we want
to test scalability and add more domains. We also hope to
compare DOMAPS with other frameworks, and provide a
full framework evaluation, as well as evaluating each of its
components separately.

These experiments show an interesting result in regards
to the number of expansions and inferences. DOMAPS re-
quires fewer state expansions and inferences, even if adding
all the agents, than SHOP2. The individual planning ap-
proach taken in DOMAPS discards many of the predicates
that are usually used to assign tasks between different ob-
jects, whilst SHOP2 needs those predicates to define the
(agent) objects. By considering agents as first-class abstrac-
tions in MA-HTN, we are free of the use of these predicates.

6 Related and Future Work
There has been several surveys over the years describing ad-
vancements in particular areas of planning. Of interest, and
related to this research, there are: in (desJardins et al. 1999),
a survey on distributed online (continual) planning is pre-
sented, with the state of the art in distributed and online
planning at the time, and a conceptual design for distributed
online planning; a survey (Meneguzzi and De Silva 2013)
that presents a collection of recent techniques used to inte-
grate single-agent planning for a single-agent in BDI-based
agent-oriented programming languages, focusing mostly on
efforts to generate new plans at run-time; and a multi-agent
planning survey (Weerdt and Clement 2009), describing sev-
eral approaches taken towards multi-agent planning over the
last few years.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

21



In (Nissim and Brafman 2014), the authors propose a for-
ward search heuristic for classical multi-agent planning that
respects the distributed structure of the system, preserving
agents privacy (Brafman 2015). According to their experi-
ments, their system showed the best performance in regards
to planning time and communication, as well as the qual-
ity of the solution (in most cases), when compared to other
offline multi-agent planning systems.

FLAP (Sapena, Onaindia, and Torreño 2015) is a hy-
brid planner that combines partial-order plans with forward
search. The planner uses a parallel search technique that di-
versifies the search. FLAP exploits delaying commitment to
the order in which actions are applicable. This is done to
achieve flexibility, reducing the need of backtracking and
minimising the length of the plans by promoting the parallel
execution of actions. These changes come at an increase in
computational cost, but it allows FLAP to solve more prob-
lems than other partial-order planner.

In (Clement, Durfee, and Barrett 2007), multi-agent plan-
ning algorithms and heuristics are proposed to exploit sum-
mary information during the coordination stage, in order to
speed up planning time. The authors claim that by associat-
ing summary information with plans’ abstract operators, it
can ensure plan correctness, even in multi-agent planning,
while still gaining efficiency and not leading to incorrect
plans. The key idea is to annotate each abstract operator
with summary information about all of its potential needs
and effects. This process often resulted in an exponential re-
duction in planning time compared to a flat representation.
Their approach depends on some specific conditions and as-
sumptions, and therefore cannot be used in all domains.

Multi-Agent Planning Language (MAPL) is proposed
in (Brenner and Nebel 2009), for modelling MAP domains
in online planning. Plans expressed in this language inter-
leave planning, acting, sensing, and communicating. Their
approach is based on sharing knowledge in order to ensure
the synchronous execution of joint plans. It is different from
our approach, where agents keep their private knowledge
and are coordinated through the organisation via social laws.
Their interleave mechanism could be used in DOMAPS to
shorten the time between planning and execution.

Kovacs proposed an extension for PDDL3.1 that enables
the description of multi-agent planning problems (Kovacs
2012) in PDDL. It copes with many of the already discussed
open problems in multi-agent planning, such as the exponen-
tial increase of the number of actions, but it also approaches
new problems such as the constructive and destructive syn-
ergies of concurrent actions. Although only the formalism is
provided (it is not yet supported by any planner), the ideas
expressed by Kovacs are enticing, making it an interesting
candidate to add to DOMAPS planning formalisms.

Markov Decision Processes (MDP) are often used when
dealing with non-deterministic worlds to coordinate agents
during planning. These methods can also be extended to deal
with partially observable environments, known as Partially
Observable Markov Decision Processes (POMDP). For ex-
ample, in (Wu, Zilberstein, and Chen 2011), the authors use
an online algorithm for planning under uncertainty in multi-
agent settings modelled as decentralised POMDPs, requir-

ing little to no communication. While in (Brafman, Shani,
and Zilberstein 2013), qualitative decentralised POMDP is
proposed as a a qualitative, propositional model for multi-
agent planning under uncertainty with partial observability.

In multi-agent POMDPs, the action and observation space
grows exponentially with the number of agents. In (Am-
ato and Oliehoek 2015), a scalable approach based on
sample-based planning and factored value functions that ex-
ploits multi-agent structure to produce a scalable method
for Monte Carlo tree search for POMDPs. They formalise
a team of agents as a multi-agent POMDP, and introduce an
online planner that uses factored statistics and factored trees
to reduce the number of joint actions and the number of joint
histories considered. Adding these approaches to DOMAPS
could allow us to consider domains with non-deterministic
actions and partially-observable environments.

Plan repair is the re-use of fragments of an old plan, and
can be used to effectively simplify the coordination stage of
planning. The authors of (Komenda, Novak, and Pechoucek
2014), argue that in decentralised systems where coordina-
tion is required to achieve joint objectives, attempts to repair
failed multi-agent plans should lead to lower communication
overhead than re-planning from scratch. They also describe
three algorithms for domain-independent multi-agent plan
repair. At the moment, the re-planning in DOMAS works by
restarting the planning process from scratch (but with up-
dated information about the world). Integrating these plan
repair algorithms could provide some important improve-
ments to re-planning in DOMAPS.

Techniques for solving multi-agent pathfinding problems
are also becoming more common. These problems relate to
finding paths from start to goal positions for all agents, while
avoiding collisions. For example, in (Sharon et al. 2015),
a new multi-agent pathfinding algorithm is presented. The
conflict based search algorithm works on two levels: at the
high level the search is performed on a conflict tree con-
taining the conflicts between individual agents; and at the
low level single-agent searches are performed to satisfy the
constraints found at the high level. This conflict tree could
be useful for mapping the conflicts for the coordination
mechanisms of DOMAPS. Combining path planning with
task planning, such as suggested by (Srivastava et al. 2014),
could also be useful in order to run real world scenarios with
multiple robots.

7 Conclusion
In this paper, we described the design of the Distributed On-
line Multi-Agent Planning System (DOMAPS). Specifying
each of its main components: i) the planning formalism –
we introduced the MA-HTN formalism, a multi-agent vari-
ation of the traditional single-agent HTN formalism; ii) the
goal allocation mechanism – by using a contract net proto-
col, the agents that participate in the planning stage can pre-
select the goals that they believe to be more appropriate to
them, this pre-planning can cut the planning time consider-
ably in domains with heterogeneous agents and varied goals;
iii) the individual planner – the SHOP2 planner is used in
each agent for individual planning, so as to make the most
of the HTN-like structure of the plan library in Jason agents;

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

22



iv) the coordination mechanism – employment of social laws
to coordinate the agents during run-time in order to avoid
possible conflicts made during planning.

Initial experiments and experience with DOMAPS has
presented enough positive incentives to pursue solutions for
the limitations and to provide improvements for the frame-
work overall, for example by adding new approaches to each
component. The performance of our coordination mecha-
nism is limited to the designer ability of detecting conflicts
and formulating suitable social laws, similarly to the way
that HTN depends on good methods.

Acknowledgments
We are grateful for the support given by CAPES and by
CNPq (grant number 308095/2012-0).

References
Amato, C., and Oliehoek, F. A. 2015. Scalable planning
and learning for multiagent pomdps. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., 1995–2002.
Boissier, O.; Bordini, R. H.; Hübner, J. F.; Ricci, A.; and
Santi, A. 2011. Multi-agent oriented programming with
JaCaMo. Science of Computer Programming.
Bordini, R. H.; Wooldridge, M.; and Hübner, J. F. 2007. Pro-
gramming Multi-Agent Systems in AgentSpeak using Jason.
John Wiley & Sons.
Brafman, R. I.; Shani, G.; and Zilberstein, S. 2013. Qualita-
tive planning under partial observability in multi-agent do-
mains. In Proceedings of the Twenty-Seventh Conference on
Artificial Intelligence, 130–137.
Brafman, R. I. 2015. A privacy preserving algorithm for
multi-agent planning and search. In Proceedings of the
Twenty-Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-
31, 2015, 1530–1536.
Brenner, M., and Nebel, B. 2009. Continual planning and
acting in dynamic multiagent environments. Autonomous
Agents and Multi-Agent Systems 19(3):297–331.
Cardoso, R. C., and Bordini, R. H. 2016. A multi-agent ex-
tension of hierarchical task network. 10th Workshop-School
on Agents, Environments, and Applications (WESAAC).
Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract reasoning for planning and coordination. Journal of
Artificial Intelligence Research (JAIR) 28:453–515.
Crosby, M.; Jonsson, A.; and Rovatsos, M. 2014. A single-
agent approach to multiagent planning. In 21st European
Conf. on Artificial Intelligence (ECAI’14).
desJardins, M. E.; Durfee, E. H.; Ortiz, C. L.; and Wolver-
ton, M. J. 1999. A survey of research in distributed, contin-
ual planning. AI Magazine 20(4).
Durfee, E. H., and Zilberstein, S. 2013. Multiagent planning,
control, and execution. In Weiss, G., ed., Multiagent Systems
2nd Edition. MIT Press. chapter 11, 485–545.
Hübner, J. F.; Sichman, J. S.; and Boissier, O. 2007. De-
veloping organised multiagent systems using the MOISE+

model: programming issues at the system and agent levels.
Int. J. Agent-Oriented Software Engineering 1(3/4):370–
395.
Komenda, A.; Novak, P.; and Pechoucek, M. 2014. Domain-
independent multi-agent plan repair. Journal of Network and
Computer Applications 37:76 – 88.
Kovacs, D. L. 2012. A multi-agent extension of pddl3.1. In
Proceedings of the 3rd Workshop on the International Plan-
ning Competition (IPC), ICAPS-2012, 19–27.
Meneguzzi, F., and De Silva, L. 2013. Planning in BDI
agents: a survey of the integration of planning algorithms
and agent reasoning. The Knowledge Engineering Review
FirstView:1–44.
Nau, D.; Ilghami, O.; Kuter, U.; Murdock, J. W.; Wu, D.; and
Yaman, F. 2003. Shop2: An htn planning system. Journal
of Artificial Intelligence Research 20:379–404.
Nissim, R., and Brafman, R. I. 2014. Distributed heuristic
forward search for multi-agent planning. J. Artif. Intell. Res.
(JAIR) 51:293–332.
Omicini, A.; Ricci, A.; and Viroli, M. 2008. Artifacts in
the A&A meta-model for multi-agent systems. Autonomous
Agents and Multi-Agent Systems 17(3):432–456.
Ricci, A.; Piunti, M.; Viroli, M.; and Omicini, A. 2009. En-
vironment programming in CArtAgO. In Multi-Agent Pro-
gramming: Languages, Tools and Applications, Multiagent
Systems, Artificial Societies, and Simulated Organizations.
Springer. chapter 8, 259–288.
Sapena, O.; Onaindia, E.; and Torreño, A. 2015. FLAP: ap-
plying least-commitment in forward-chaining planning. AI
Commun. 28(1):5–20.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219:40 – 66.
Shoham, Y., and Tennenholtz, M. 1995. On social laws for
artificial agent societies: Off-line design. Artif. Intell. 73(1-
2):231–252.
Singh, M., and Chopra, A. 2010. Programming multia-
gent systems without programming agents. In Braubach, L.;
Briot, J.-P.; and Thangarajah, J., eds., Programming Multi-
Agent Systems, volume 5919 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 1–14.
Smith, R. G. 1980. The contract net protocol: High-level
communication and control in a distributed problem solver.
IEEE Trans. Comput. 29(12):1104–1113.
Srivastava, S.; Fang, E.; Riano, L.; Chitnis, R.; Russell, S.;
and Abbeel, P. 2014. Combined task and motion planning
through an extensible planner-independent interface layer.
In IEEE International Conference on Robotics and Automa-
tion (ICRA).
Weerdt, M. D., and Clement, B. J. 2009. Introduction
to Planning in Multiagent Systems. Multiagent Grid Syst.
5(4):345–355.
Wu, F.; Zilberstein, S.; and Chen, X. 2011. Online plan-
ning for multi-agent systems with bounded communication.
Artificial Intelligence 175(2):487–511.

ICAPS Proceedings of the 4th Workshop on Distributed and Multi-Agent Planning (DMAP-2016)

23


